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The first chapter, Identification of Unknown Factors: Leaders and Followers, concerns finding

an economic interpretation of an underlying factor model. Previously, factors have been con-

sidered an unimportant nuisance parameter in the data. With factor identification, factors

can be economically interpreted, creating more clear descriptions of the underlying patterns

in the data. The authors also propose a leadership model where one individual in the panel

is the common factor, the source of cross-sectional dependence (CSD) in the data.

In the second chapter, Heavy Traffic: Determination of Homicide Rates across the 50 United

States, the author uses these new methods to analyze state-level crime rates in the U.S.

from 1971 to 2011. Few papers have previously explored CSD between states in the crime

data. While property crimes may be influenced by the common U.S. business cycle, it is

somewhat puzzling that murder rates exhibit CSD between states. Using the leadership

method detailed in the first chapter, the source of CSD in the data is found to be equivalent

to the murder rates in California and Texas. The reason for this effect is likely to be related

to drug-trafficking from Mexico through these key states and into the U.S. as a whole.
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In the third chapter, Improved Two-Sample Comparisons for Laboratory Data, the author

proposes a new approach to comparing the distributions of randomly drawn, independent

samples. The Wilcoxon-Mann-Whitney (WMW) rank sum test is criticized for its compli-

cated hypothesis and for having low power while laboratory data is quite costly. In contrast

to this nonparametric approach, the author proposes a parametric test using the beta dis-

tribution to gain a significant power advantage. Further, the author introduces the idea

of comparing higher-moments, e.g., skewness, of the respective distributions to find differ-

ences which first-moment comparisons will miss. Altogether, this dissertation provides new

methods for understanding economic and laboratory data in a more meaningful way.
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PREFACE

The following paper is an equal contribution from Jason Parker and Donggyu Sul. Donggyu

Sul is responsible for the original ideas of identification through factor number estimation

and dominant leadership modeling. These ideas and the others were developed by both

authors throughout the research process. Donggyu Sul wrote the introduction to the paper.

Both authors were involved in the rest of the writing. The proofs, simulations, and examples

were composed by Jason Parker.

2
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ABSTRACT

First, this paper develops a new criterion for testing if a particular time series variable is

a common factor in the conventional approximate factor model. Second, by modeling ob-

served factors as a set of potential factors to be tested, this paper reveals how to easily pin

down the factor without performing a large number of tests. This allows the researcher to

check whether or not each individual in the panel is the underlying common factor. When

multiple individuals appear to be factors, identification becomes confounded. A clustering

mechanism is designed to identify the underlying factors in such a situation. Asymptoti-

cally, the developed procedure correctly identifies the factor when N and T jointly approach

infinity under the minimal assumptions of Bai and Ng (2002). The procedure is shown to be

quite effective in the finite sample by means of Monte Carlo simulation. The procedure is

then applied to three empirical examples, demonstrating that the newly-developed method

identifies the unknown common factors accurately.

3



www.manaraa.com

4

1.1 Introduction

In the last two decades, there has been rapid development in analyzing cross-sectional de-

pendence by using the approximate common factor structure. Among many others, Ahn

and Horenstein (2013), Amengual and Watson (2007), Bai and Ng (2002), Hallin and Liska

(2007), Harding (2013), Kapetanios (2010), Onatski (2009), and Perez and Ahn (2007) sug-

gest consistent estimation procedures for the number of common factors, while Bai (2003;

2004), Bates, Plagborg-Møller, Stock, and Watson (2013), Choi (2012), Forni, Hallin, Lippi,

and Reichlin (2000, 2005), and Stock and Watson (2002a; 2002b) propose consistent estima-

tors for the common factors.

However, the most thorny challenge in this literature is the identification of these un-

known common factors. Without identification, a common factor model of an economic

phenomenon is fundamentally incomplete. Presently, empirical researchers have two general

identification strategies. First, some researchers are forced to settle for simply describing

the factors using their shape, correlation to observed series, and factor loadings (e.g., Lud-

wigson and Ng 2007; Reis and Watson 2010). The problem with this approach is that the

factor is only described, not pinned down. Sometimes researchers name the factor, but that

name is completely arbitrary. The other approach is directly to compare a (m× 1) vector of

potential true factors Pt with the (r× 1) vector of unknown statistical factors Ft. Of course,

the true statistical factor Ft is not observable, so Bai and Ng (2006) propose several tests to

check whether or not a linear combination among the principal component estimators of Ft

becomes identical to one or a linear combination of the potential factors Pt. Their idea was

novel but unfortunately the finite sample performance is rather disappointing. As we will

show later but the Bai and Ng (2006)’s tests suffer from serious size distortion even with large

N and T (the dimensions of the panel). Another problem of the Bai and Ng (2006)’s tests

is that even when Pt were identified as one of the common factors, there was no suggested

clustering algorithm to identify which component of Pt is matching with which component



www.manaraa.com

5

of Ft. The solution to this problem does not seem to exist until the estimated factors are

identical to the true statistical factors. Along with this line, Bai and Ng (2013) provide three

sets of restrictions to make the principal component (PC hereafter) estimators, F̂t, be the

true statistical factors, Ft.

The purpose of this paper is to provide a novel and intuitive approach to identify whether

or not an observed time series is asymptotically equal to an unobserved true factor. The

newly suggested identification strategy does not require any identification restrictions for

the PC estimators. The underlying logic is based on the notion of an ‘asymptotically weak

factor’. When a panel data has only asymptotically weak factors, the true number of common

factors to the panel data becomes zero as both N and T go to infinity. For example, the

PC estimates of the idiosyncratic components are asymptotically weak factors. Obviously,

conventional factor number estimation such as Bai and Ng (2002) or Hallin and Liska (2007)

will estimate a factor number of zero with panel data which only has asymptotically weak

factors. We are utilizing this principle to identify whether or not a vector of potentially

true factors, Pt, are indeed one of the true statistical factors, Ft. Let Pjt be the jth element

of Pt. Then, it is easy to show that the regression residuals from the regression of one of

the potential factors and any (r − 1) vector of the estimated common factors have only

asymptotically weak factors, so that the conventional factor number estimators can be used

to examine whether or not a potential factor is the true common factor. Of course, if Pjt is not

a true factor, then the regression residuals must have at least one strong factor. This simple

but novel idea does not require any identification restrictions either on the PC estimators or

a rotation matrix H.

While the newly-developed method can be used to test exogenous time series, this paper

models the factor as potentially being one particular individual which appears in the panel.

When one individual is exactly equal to the factor, we call this individual a ‘dominant leader.’

If the factor is not a leader in the finite sample, but becomes a leader as N and T go to

infinity, the individual is called an ‘approximate dominant leader.’
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This leadership model has a powerful interpretation: one or more individuals become

the source(s) of the cross-sectional dependence in the factor model. Consider the following

hypothetical example of leadership: In industrial organization, one or a few dominant firms

can set a price for their product, and the rest of the market more or less adopts that

price. This type of causal relationship can be observed in many areas including social,

agricultural, and behavioral sciences. In natural science, earthquakes and the spread of

viruses are potential examples of this pattern. In such situations, a few individuals or

locations become leaders or sources of epidemic events. Therefore, an important task is to

identify the leaders from a set of individuals.

Since the factor identification strategy above must be performed separately for each

individual, there could be some failure probability when N , the number of individuals in

the panel, is large. To control this probability, we provide a method based on ranking R2

values from regressions of the estimated PC factors on each individual time series separately.

Individuals with high R2 are considered ‘leader candidates’ to be potentially identified as

leaders.

If multiple leaders are found in the data, some individuals could be approximate dominant

leaders for the same factor. Accordingly, we provide a clustering procedure to pin down which

individual is related to which factor. This clustering is based on observing correlations and

checking the residual factor number from including multiple individuals as regressors.

It is worth mentioning that two papers have already used our identification strategy.

Gaibulloev, Sandler and Sul (2012) find that Lebanon is the main determinant of transna-

tional terrorism. Greenaway-McGrevy, Mark, Sul and Wu (2012) (henceforth GMSW) utilize

our method to find three key currencies as the main determinants for local exchange rates.

The remainder of the paper is organized as follows. Section 1.2 provides information

about the setting as well as the definition of weak factors. Section 1.3 discusses leadership

modeling and testing. Detailed asymptotic analyses are also provided. Section 1.4 demon-

strates the finite sample performance of our test and also compares our results with Bai and
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Ng (2006). Section 1.5 provides three empirical examples to show the effectiveness of our

test. Section 1.6 concludes. Mathematical proofs are provided in Appendix A. Gauss code

for the procedures as well as extra Monte Carlo simulations are available at the author’s

website.

1.2 Preliminary

Before we proceed, we define the variables that are used in the paper. yit is the panel data

of interest where the cross-sectional dependence can be expressed in a static common factor

representation. Gt is the r × 1 vector of true common factors, Ft is the r × 1 vector of true

static common factors. See (1.2) below for the difference between Gt and Ft. F̂t is the r × 1

vector of the principal component estimator, H is the r × r rotating matrix. # (yit) is the

true number of common factors of yit and #̂ (yit) is the estimated number of common factors

of yit. y
o
it is the idiosyncratic component to yit.

To provide an intuitive explanation of how factor number estimation can be used to

identify the true factors, we consider the following static factor structure with two factors

(r = 2) as an example.

yit = α1iG1t + α2iG2t + yoit, (1.1)

where αji is the true factor loading coefficient for the ith individual and to the jth factor.

Here we exclude any non-zero constant terms for notational simplicity. The inclusion of a

constant term does not change the result at all. Further assume that the two true factors

are correlated with each other. Let Gt ∼ d (0,Ω) , then there exists a unique Cholesky

decomposition such that  G1t

G2t

 =

 a11 0

a12 a22


 F1t

F2t

 = AFt, (1.2)
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where F1t is independent from F2t but both F1t and F2t have the unitary variance. That is,

Ft ∼ d (0, I2) . By using (1.2), (1.1) can be rewritten as

yit = λ1iF1t + λ2iF2t + yoit, (1.3)

where λ1i = α1ia11 + α2ia21, and λ2i = α2ia22. Following GMSW, we call Gt the empirical

true factors while Ft are called the statistical true factors. The number of factors in yoit is

naturally zero, independent of how the common factors are defined (empirically or statisti-

cally). Interestingly, the estimate of yoit – the panel of regression residuals of ŷoit from running

yit on either Gt or Ft – does not include any significant common factor either as long as the

least squares estimator for the factor loading coefficients is consistent. That is,

ŷoit = yit − α̂1iG1t − α̂2iG2t = yit − λ̂1iF1t − λ̂2iF2t (1.4)

= yoit + (α1i − α̂1i)G1t + (α2i − α̂2i)G2t = yoit +Op

(
T−1/2

)
. (1.5)

The first equality holds exactly due to (1.2). Even though ŷoit has two common factors in

the finite sample, asymptotically ŷoit does not have any common factors since the common

components vanish asymptotically. We call such factors ‘asymptotically weak factors.’ Let xoit

be the random variables which satisfy Bai and Ng (2002)’s Assumption C for the idiosyncratic

components. Define xit = ψ′iZt+xoit where ψi and Zt are factor loadings and common factors

to xit, respectively. Then formally, the asymptotically weak factor can be defined as

Definition: (Asymptotically Weak Factors) xit has asymptotically weak factors if and

only if ψiZt = Op

(
C−1NT

)
where CNT = min

[√
N,
√
T
]
.

Note that Chudik and Pesaran (2013) use the terminology of ‘weak factor’ to define the cross-

sectionally weak dependence where the common factor is Op (1) but the factor loadings are

Op

(
N−1/2

)
. Hence, the notion of asymptotically weak factors used in this paper is weaker
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than the concept of ‘weak factor.’ Next, the following lemma can be directly established.

Recall that in the beginning of this section we defined # (xit) as the true factor number to

xit and #̂ (xit) as the estimator for the factor number of xit.

Lemma 1 (Asymptotic Factor Number for Weak Factors) As N, T →∞ jointly,

lim
N,T→∞

Pr
[
#̂ (xit) = 0

]
= 1. (1.6)

See Appendix A for the proof. Intuitively, if xit has only asymptotically weak factors, then

asymptotically the cross-sectional dependence among xit becomes equivalent to that among

xoit which leads to (1.6). According to Lemma 1, it becomes obvious that Pr
[
#̂ (ŷoit) = 0

]
→ 1

as N, T → ∞. Hence if Gt are true factors to yit, then the regression residuals, ŷoit, should

not have any strong factors. However the opposite is not true in general. Consider a variable

Wt which is not correlated with yit at all. Then as long as Wt is included as a regressor with

Gt together, the new regression residuals will only have asymptotically weak factors. That

is, consider the following regression:

yit = α1iG1t + α2iG2t + α3iWt + yoit,

and define the new residuals as

ŷoit = yit − α̂1iG1t + α̂2iG2t + α̂3iWt = yoit + op (1) .

Since α̂3i →p 0 as T →∞, Wt becomes an asymptotically weak factor to yoit. But it does not

mean that Wt is a true factor to yit.

Hence naturally, our interest becomes identifying potential variables one at a time. If

the statistic factors were known, such identification could be achieved. Note that Ft is not

observable but can be estimated by H ′−1F̂t where H is an invertible 2 × 2 rotation matrix

(in this example). Rewrite (1.3) as

yit = λ̂′iF̂t + ŷoit, (1.7)
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where the new residual, ŷoit, is defined as

ŷoit = yoit −
(
λ̂′i − λ′iH ′−1

)
F̂t − λ′iH ′−1

(
F̂t −H ′Ft

)
. (1.8)

It is well known that under suitable conditions given in Bai (2003), λ̂′i−λ′iH ′−1 = Op

(
T−1/2

)
and

(
F̂t −H ′Ft

)
= Op

(
N−1/2

)
. In other words, the new regression residuals of ŷoit in (1.8)

also have only asymptotically weak factors.

The true common factors can be rewritten as

Gt = AFt = AH ′−1F̂t + AH ′−1
(
H ′Ft − F̂t

)
= BF̂t +Bεt, (1.9)

where B = AH ′−1 and εit = H ′Ft − F̂t = Op

(
N−1/2

)
. To be specific, following the example

considered above, we rewrite (1.9) as G1t

G2t

 =

 b11 b12

b21 b22


 F̂1t

F̂2t

+

 b11 b12

b21 b22


 ε1t

ε2t

 , (1.10)

where ε1t = Op (N−1) and ε2t = Op (N−1) . Next, consider the following regression

yit = β1iG1t + β2iF̂2t + uit. (1.11)

The regression coefficient and error can be derived by combining (1.10) with (1.7): β1i =

λ̂1i/b11, β2i = λ̂2i− λ̂1ib12/b11, and uit = ŷoit−
(
λ̂1i/b11

)
ε1t where ŷoit is defined in (1.8). Note

that the LS estimator β̂1i becomes biased due to the temporal correlation between G1t and

ε1t but is consistent since T−1
∑T

t=1 ε
2
1t = Op (N−1) . The regression residuals can be written

as

ûit = uit +
(
β1i − β̂1i

)
G1t +

(
β2i − β̂2i

)
F̂2t.

Since ûit has only asymptotically weak factors, it is obvious that limN,T→∞ Pr
[
#̂ (ûit) = 0

]
=

1. For G2t, similar to (1.11), one can switch F̂2t with F̂1t and G1t with G2t. Then the regression

residuals should not have any strong factors. It is important to note that in the place of F̂2t
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in (1.11), one may consider using F̂1t instead. As long as b12 6= 0, G1t can be identified by

including F̂1t rather than F̂2t in (1.11).

Next, consider a time series variable Lt such that Lt = δG1t + vt, for vt = Op (1) . Due

to the random error of vt, Lt is not a true factor. Similar to (1.11), we can consider the

following regression.

yit = β∗1iLt + β2iF̂2t + u∗it,

where β∗1i = β1i/δ and u∗it = uit−vt. Then it is easy to show β̂∗1i 9p β∗1i due to the correlation

between Lt and u∗it. Hence it is straightforward to show that limN,T→∞ Pr
[
#̂ {û∗it} = 0

]
= 0.

In sum, as long as we are interested in identifying whether or not Gjt ∈ {Ft} , we do

not need any identification restriction on the rotation matrix, H. For example, Bai and

Ng (2013) consider three identification restrictions for the rotation matrix, H, to be the

identity matrix, I, so that F̂t = Ft + op (1) . The method used in our paper does not require

such identification restrictions. We formally present the identification procedure in the next

section.

1.3 Definitions and Identification Procedure

Before we start to provide identification procedures and strategies, we provide conceptual

definitions of the empirical true factors: Dominant and approximate dominant leaders.

Definitions

Let Pt = [P1t, ..., Pmt]
′ be the m×1 vector of potential true factors which researchers want to

examine. Note that m is not necessarily equal to r. We will discuss the reason shortly. If Pt

are the true factors, then the inclusion of Pt into the panel data yt = [y1t, ..., yNt] always leads

to more accurate estimation of the common factors (See Boivin and Ng, 2006). Also, it is

possible that a few leaders become the true common factors of the panel data. An example
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of this endogenous estimation appears in Gaibulloev, Sandler and Sul (2012) which finds

that transnational terrorism in Lebanon is the main determinant of transnational terrorism

for the rest of the world. Hence without loss of generality, we can include Pt as a part of

the panel data {yit} and re-order them as {y1t, ..., ymt, ym+1,t, ..., yN+m,t} so that the first m

individuals are the potential true common factors to {yit} .

Definition (Dominant Leaders): The jth unit becomes an exact dominant leader if and

only if yjt = Gjt.

In general, the maximum number of dominant leaders should be the same as the number of

true common factors. However sometimes, the number of leaders could be larger than the

number of the factors especially when there are many approximate dominant leaders which

can be defined as

Definition (Approximate Dominant Leaders): The jth unit becomes an approximate

dominant leader for the jth empirical true factor if and only if Gjt = yjt+ζjt for j = 1, ..., r

where ζjt = εjt/
√
T and εjt ∼ d

(
0, σ2

j

)
with maxσ2

j = σ̄2 <∞.

When σ2
j = 0, the jth unit becomes a dominant leader. The non-zero variance of σ2

j implies

that the jth unit may lose its leadership temporarily. That is,

yjt =

 Gjt if t /∈ Ωo

Gjt + εjt if t ∈ Ωo

for εjt ∼ d
(
0, σ2

j

)
Let t = 1, ..., T and Ωo be a fixed set of time periods. Call the number of elements of Ωo, p,

which is fixed as N, T → ∞. So yjt is not the leader for p time periods. Then the variance

of the deviation between the true factor and the dominant leader, yjt −Gjt, becomes

σ2
j,T = E

[
1

T

T∑
t=1

(yjt −Gjt)
2

]
=
pσ2

j

T
for a small constant p > 1.
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We will later show empirical evidence for the existence of approximate dominant leaders.

When there are approximate dominant leaders, then the number of these leaders can be

larger than the number of true common factors. Also note that, asymptotically, the approx-

imate dominant leaders cannot be distinguished from the dominant leader since as T →∞,

approximate dominant leaders become the dominant leader.

Identification Procedures

The identification procedures differ depending on whether or not potential leaders are given

to or selected by researchers. We first consider the simplest case where potential leaders

are given or known. Here we assume that the number of the true factors is known. This

assumption is fairly reasonable since Bai and Ng (2002)’s criteria perform fairly well when

the panel data are rather homogeneous.1 Note that we are identifying whether or not a time

series is either a dominant or approximate dominant leader for F̂st for s = 1, ..., r since the

true statistical factors are unknown.

To make a clear presentation, we use the case of r = 2 but m = 3 throughout this section.

That is, Gt, Ft, and F̂t become 2× 1 vectors but the potential variable, Pt, is a 3× 1 vector.

Even when H is an identity matrix, the first PC estimator F̂1t can be F2t depending on

the values of factor loadings in (1.3), which also depend on the values of α in (1.1) and the

variance matrix of Gt, Ω. However regardless of the ordering, the point of interest becomes

whether or not F̂1t can be identified by Pjt for j = 1, ..,m. Let

Git − Pjt = γijεjt/
√
T + δijξjt, (1.12)

1When we refer to panel homogeneity in this paper, we are specifically referring to the panel being
constructed of one central variable, such as state-level unemployment rates over time. In terms of the factor
structure, homogeneity appears when the order of integration is the same across cross-sectional units and
when the idiosyncratic variances are not seriously heterogeneous.
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where εjt ∼ d
(
0, σ2

ε,j

)
, ξjt ∼ d

(
0, σ2

ξ,j

)
for a finite constant of σ2

ε,j and σ2
ξ,j. By definition, if

δij = 0 but γij 6= 0, then Pjt becomes the approximate dominant leader for Git. All Pjt can

be approximate dominant leaders for each particular j = 1, ..., r.

To identify whether or not Pjt is either a dominant or approximate dominant leader for

F̂st for s = 1, ..., r, we suggest examining whether or not the regression residuals from the

following regressions have any strong common factors.

yit = β2,jiPjt + λ2,jiF̂2t + yo2j,it, (1.13)

yit = β1,jiPjt + λ1,jiF̂1t + yo1j,it, (1.14)

Suppose that P1t = G1t exactly. However, even in this case, P1t 6= F̂1t but P1t becomes a

function of F̂1t and F̂2t. Depending on the value of the off-diagonal element in B in (1.10),

or alternatively the depending on the values of λ1i and λ2i, the estimated number of the

common factors in either or both of ŷo2j,it and ŷo1j,it becomes zero. For r ≥ 2, (1.13) and

(1.14) can be written as

yit = βs,jiPjt + λ′i,−sF̂−s,t + yosj,it for s = 1, ..., r, (1.15)

where F̂−s,t = [F1t, ..., Fs−1,t, Fs+1,t, ..., Frt] and λi,−s = [λi1, ..., λis−1, λis+1, ..., λrt] . When

r = 1, F̂−s,t and λ′i,−s are not present in (1.15). Then more formally, we have

Theorem 1.1 (Identification of Estimated Factors: Known Potential Leaders)

Under the assumptions in Bai and Ng (2002),

(i) If δij = 0, then the probability that the regression residuals in (1.15) have zero factor

becomes

lim
N,T→∞

Pr
[
#̂
(
ŷo1j,it

)
= 0 or #̂

(
ŷo2j,it

)
= 0 or,..., #̂

(
ŷorj,it

)
= 0
]

= 1. (1.16)

(ii) If δij 6= 0, then

lim
N,T→∞

Pr
[
#̂
(
ŷo1j,it

)
= 0 or #̂

(
ŷo2j,it

)
= 0 or,..., #̂

(
ŷorj,it

)
= 0
]

= 0 (1.17)
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From Lemma 1, the proof of Theorem 1.1 becomes obvious. If all off-diagonal elements of the

B matrix become zero – that is, when G1t and G2t are independent of each other and H = I2,

then either ŷo1j,it or ŷo2j,it has asymptotically weak factors. In this case, #̂
(
ŷo2j,it

)
→ 0 but

#̂
(
ŷo1j,it

)
→ 1 if P1t = G1t. However this is an extreme case. In general, G1t can be correlated

with G2t and also the rotating matrix H may not be the identity matrix, so that the off-

diagonal elements of B = AH−1 matrix are not equal to zero. Hence usually both ŷo1j,it and

ŷo2j,it have only asymptotically weak factors if δij = 0. Hence #̂
(
ŷo2j,it

)
→ 1 but #̂

(
ŷo1j,it

)
→ 1

if δ1j = 0.

Many times when leaders are unknown and N is large, applying our criterion to each

individual in the panel could lead to over-estimation of the number of approximate dominant

leaders, since the ‘size’ of the procedure is non-zero. One solution to this problem is to run

the following regression:

F̂st = cssPjt + cs.−sF̂−s,t + ε∗st for each Pj for each s

and obtain the R2-statistics. For each factor, F̂st, the individuals, Pj, with high R2 value

have high estimated partial correlation to the factor. Choosing to test only these individuals

avoids over-estimation of the number of approximate dominant leaders. It is easy to show

that this procedure is consistent as N and T go to infinity.

By running (1.13) and (1.14) for r = 2, or (1.15) for r ≥ 1, approximate dominant leaders

can be identified for any Gst but the dominant leaders for a particular Gst are not known. To

achieve this, we suggest the following sieve method to cluster approximate dominant leaders

to each Gst.

Clustering Method Suppose that there are k approximate dominant leaders identified

by (1.16). If some Pjt are the approximate dominant leaders for Gst, then the variance ratio
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between any asymptotically equal dominant leaders must not be different from one with a

large T.

limT→∞Corr (Pjt,Pit) = 1 if Pjt ∈ Gst & Pit ∈ Gst

limT→∞Corr (Pjt,Pit) = c < 1 if Pjt ∈ Gst & Pit /∈ Gst

, (1.18)

For a finite T, Pjt can be clustered into r subgroups at once by checking the correlation

orders. Alternatively, one can choose Pjts for which correlation coefficients are relatively

high. We will show later in the empirical example section that clustering Pjts into a single

subgroup is rather easy as long as the correlation between G1t and Gst for s 6= 1 is relatively

small.

However, the clustering mechanism based on the correlation order is not airtight in the

finite sample. To verify whether or not the clustering order is well chosen, the following

method is recommended. Obtain the LS residuals from the following regression by including

a set of clustered leaders.

yit =
∑
j∈s

α∗jiPjt + y∗s,it (1.19)

Then asymptotically the estimated number of the common factors should be equal to r − 1

if all Pjts are approximate dominant leaders for a particular Gst.

lim
N,T→∞

Pr
[
#̂
(
ŷ∗s,it
)

= r − 1
]

=

 1 if all Pjt ∈ Gst

0 if any Pjt /∈ Gst

. (1.20)

Once all Pjts are found for a particular Gst, the whole process can be repeated until there

are no remaining dominant leaders.

Comparison to Extant Testing Methods

Bai and Ng (2006) considers a similar problem. Their test is originally designed to examine

whether or not observed vectors of variables, Pt, are true factors, Ft. They do not explicitly

discuss whether Pt can be members of {yit} and consider only “outside” macro and financial
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variables in their empirical application. However it is straightforward to extend their method

to identify dominant or sub-dominant leaders in the contour factor model.

Their test is based on (1.9). That is, if Pjt is one of the dominant leaders, then the

following should hold.

Pjt = AjFt + πjt, for πjt = 0 all t.

Their infeasible version of the test is examining whether or not πjt are zero statistically for

all t. However this logic fails when Pjt is an approximate dominant leader. In this case,

πjt = εjt/
√
T . Evidently this test requires an extremely large T to have πjt = 0 for all t when

Pjt is an approximate dominant leader.

Also the true statistical factors are not observable, the Bai and Ng (2006)’s test is based

on the PC estimator of F̂t. Then from (1.10), if Pt were exact dominant leaders, then

πt = Bεt = Op

(
N−1/2

)
.

In this case, πt must be zero for all t as N →∞. Hence their test is based on the following

statistic

τt (j) =
P̂jt − Pjt√
V
(
P̂jt

) .
In their Monte Carlo simulation, they found that the performance of the max τt test works

well. The max τt test is defined as

M (j) = max
1≤t≤T

|τ̂t (j)| ,

where τ̂t (j) is obtained with the estimate of V
(
P̂jt

)
. Their test is designed to be conservative

so that the test is supposed to reject the null of Pt = F̂t as long as πjt has a positive variance

as N or T → ∞. However if πt is bounded by Op

(
T−1/2

)
, it is easy to show that the

max τt test fails. As we discussed above, if Pt are approximate dominant leaders, then

πt = Op

(
C−1NT

)
. Hence if N > T, then the max τt test fails.
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Nonetheless, we will show later but the max τt test rejects the null hypothesis too often

even when Pt is an exact dominant leader. In other words, the size distortion of the test

becomes extremely serious.

Utilizing Other Factor Number Estimation Methods

In this paper, the Bai and Ng (2002) criterion is used to estimate the number of factors in

the residuals. Recently, other procedures have been suggested for estimating the number of

factors in panel data sets. For instance, Onatski (2009) and Hallin and Liska (2007) have

suggested alternative methods. These methods were found to perform similarly to the Bai

and Ng (2002) criteria. For more detailed results and Gauss code, see the corresponding

author’s website.

Let the ith eigenvalue of the (NT )−1 ŷo′ŷo matrix be denoted as %i. The null hypothesis

for the Onatski (2009) test is H0 : # (ŷoit) = 0 versus the alternative, H1 : 0 < # (ŷoit) ≤ rmax.

The test statistic used is

QOnat = max
0<k≤kmax

[ln (%i − %i+1)− ln (%i+1 − %i+2)]

The null hypothesis is rejected if QOnat is greater than some critical value. The Bai and Ng

(2002) procedure can be written as

QBN = max
0<k≤kmax

[
ln
(∑N

i=1
%i

)
− ln

(∑N

i=k+1
%i

)
− k × p (N, T )

]
.

The null hypothesis is rejected if QBN is less than than zero. The primary benefit of the Bai

and Ng (2002) criterion is that it does not require a distribution to find the critical value.

The Onatski (2009) procedure has the benefit that the operator can control the size of the

test.

The Hallin and Liska (2006) criterion uses subsamples of the panel, 0 < N1 < N2 < · · · <

NL = N and 0 < T1 < T2 < · · · < TM = T . Denote %
(l,m)
i as the eigenvalues of (NlTm)−1 ŷo′ŷo
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computed only using the values of ŷoit where i ≤ Nl and t ≤ Tm. Let

k̂BN (c, l,m) = arg min
0≤k≤kmax

[
ln
(∑N

i=k+1
%
(l,m)
i

)
+ k × c× p (Nl, Tm)

]
.

This is the subsample, scaled analog of the Bai and Ng (2002) IC criterion. k̂BN is a function

of a positive constant c which controls the sensitivity of the estimator. When c is small, k̂BN

does not penalize extra factors, so the estimator finds kmax as the number of factors. When

c is large, k̂BN over-penalizes the factors, so k̂BN finds zero factors in the residual. The S (c)

function is defined by

S (c) =

(
1

LM

∑
l,m

(
k̂BN (c, l,m)− 1

LM

∑
l,m
k̂BN (c, l,m)

)2
)1/2

.

Under Bai and Ng (2002) there is no control for the coefficient, c, before the penalty function.

In other words, Bai and Ng (2002) choose the value: k̂BN = k̂BN (1, L,M). Hallin and Liska

(2007) use subsamples to choose c = co in a region where S vanishes. Because of this control,

the penalty function is less sensitive to the size of N and T . k̂HL is equal to k̂BN evaluated

at co, that is to say k̂HL = k̂BN (co, L,M) .

1.4 Practical Suggestions and Monte Carlo Studies

This section provides the data generating process used in the Monte Carlo studies, summa-

rizes the procedure we discussed in earlier sections, and reports the results of Monte Carlo

simulations.

Data Generating Process

The data generating process is given by (1.1) where factor loadings and idiosyncratic errors

are generated from

α1i ∼ iidN (0, 1) , α2i ∼ iidN (0, 1) , and yoit ∼ iidN (0, 1) . (1.21)
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The first two series, y1t and y2t, are the true factors G1t and G2t.

Meanwhile the statistic factors are generated from F1t

F2t

 =

 ρ1 0

0 ρ2


 F1,t−1

F2,t−1

+

 f1t

f2t

 , (1.22)

where fjt ∼ iidN
(
0,
√

1− ρj
)

for j = 1, 2 and ρ1 and ρ2 are distributed iidU [0, 0.5]. Hence

the variances of F1t and F2t are unity and they are independent each other. The empirical

factor are generated by multiplying a Cholesky decomposed matrix of A. That is, y1t

y2t

 =

 G1t

G2t

 =

 a11 0

a12 a22


 F1,t−1

F2,t−1

 , (1.23)

where

E

 G1t

G2t

[ G1t G2t

]
=

 a11 0

a12 a22


 a11 a12

0 a22

 =

 Ω11 Ω12

Ω12 Ω22

 . (1.24)

We consider four cases of different Ω: [Ω11,Ω12,Ω22] = [1, 0.2, 1] , [1, 0.5, 1] , [2, 0.2, 1] , and

[2, 0.5, 1] .Meanwhile for all simulations, we setN = [25, 50, 100, 200] and T = [25, 50, 100, 200] .

Identifying Procedures

Here we present a step-by-step procedure used in Monte Carlo simulation and empirical

exercises.

Step 1: (Estimation of Factor Number and Common Factors)

The factor number, r, and the common factors should be estimated first. Before estimat-

ing the factor number and common factors, one should standardize each time series by its

standard deviation. In our empirical examples, we usually take logs, difference, and then

standardize the sample. For the factor number estimation, we use Bai and Ng (2002)’s
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IC2 and Hallin and Liska (2007)’s IC2 criteria (hereafter IC2 and HL2, respectively).

Note that other Bai and Ng’s criteria perform worse than IC2. It is worth noting that

the HL criteria use sub-samples over N and T. Hence when N or T is small, HL criteria

perform very poorly. To overcome this issue, we use whole N or T sample whenever N

or T is small in our empirical example, especially the data of 21 exchange rates. Here we

fix N but use sub-sample over T only.

Step 2: (Identifying Potential Leaders by using R2)

First we select potential leaders by using the R2 criterion. From (1.10), the following

regressions can be performed.

F̂1t = c11Pjt + c12F̂2t + ε∗1t (1.25)

F̂2t = c21Pjt + c22F̂1t + ε∗2t (1.26)

If Pjt = G1t, or Pjt = G1t + ζjt for ζjt = εjt/
√
T , then as N, T → ∞, the variance of ε∗1t

goes to zero. Alternatively, if Pjt = G1t + mjt where mjt has a finite variance, then the

variance of ε∗1t should not be close to zero. Similarly, if Pjt = G2t or Pjt = G2t + ζjt, then

the variance of ε∗2t also goes to zero as N, T → ∞. By utilizing this fact, we select Pjt

of which R2 is highest. It will later be shown that this R2 method detects the potential

leaders very precisely even in small samples.

Step 3: (Identifying Approximate Dominant Leaders)

Run (1.13) or (1.14) and obtain the regression residuals. Check whether or not the

estimated factor number becomes zero. Following Theorem 1.1, identify whether or not

Pjt is an approximate dominant leader. Collect all dominant leaders.
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Step 4: (Clustering Approximate Dominant Leaders)

Calculate the correlation matrix among approximate dominant leaders if they are many.

Verify the membership by running (1.19).

See next section for the demonstration of the above four steps.

Monte Carlo Results

By means of Monte Carlo simulation, we verify our theoretical claims and investigate their

finite sample performance.

The Factor Number Estimation of Asymptotically Weak Factors

First, we examine how well Lemma 1 works in finite sample environments. We consider three

different data generating processes. The first DGP is given in (1.1) with [Ω11,Ω12,Ω22] =

[1, 0.2, 1] . The second and third DGPs are the same – single factor with Ft ∼ iidN (0, 1) and

yoit ∼ iidN (0, 1) – except for the variance of factor loadings. That is,

DGP2 yit = λiFt + yoit, λi ∼ iidN (1, N−1)

DGP3 yit = λiFt + yoit, λi ∼ iidN (1, T−1)
.

Hence the true number of factors are 2, 1 and 1 for DGP 1,2,3, respectively. According to

Bai and Ng (2002), the estimated factor number must be r as N, T →∞.

The estimated idiosyncratic terms are defined as

DGP1 ŷoit = yit − λ̂1iF̂1t − λ̂2iF̂2t,

DGP2 & 3 ŷoit = yit − 1
N

∑N
i=1 yit.

Following from Lemma 1, we expect that Pr
[
#̂ (ŷoit) = 0

]
should be reasonably high.

Table 1.1 shows the results of Monte Carlo simulations of 2,000 replications. We set the

maximum lag length to be 8. Both IC2 and HL2 detect the correct factor number with
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Table 1.1. Detecting Asymptotically Weak Factors

IC2 Pr
[
#̂ (yit) = r

]
Pr
[
#̂ (ŷoit) = 0

]
T N DGP1 DGP2 DGP3 DGP1 DGP2 DGP3
25 25 0.97 1.00 0.98 0.99 1.00 0.84
25 50 1.00 1.00 1.00 1.00 1.00 0.99
25 100 1.00 1.00 1.00 1.00 1.00 1.00
50 25 1.00 1.00 1.00 1.00 1.00 0.98
50 50 1.00 1.00 1.00 1.00 1.00 0.99
50 100 1.00 1.00 1.00 1.00 1.00 0.99
100 25 1.00 1.00 1.00 1.00 1.00 1.00
100 50 1.00 1.00 1.00 1.00 1.00 0.98
100 100 1.00 1.00 1.00 1.00 1.00 0.98
HL2

25 25 0.78 1.00 1.00 1.00 1.00 0.99
25 50 0.99 1.00 1.00 1.00 1.00 1.00
25 100 1.00 1.00 1.00 1.00 0.99 1.00
50 25 0.98 1.00 1.00 0.99 1.00 1.00
50 50 0.98 1.00 1.00 0.98 0.99 0.98
50 100 0.99 1.00 1.00 0.99 0.97 0.99
100 25 1.00 1.00 1.00 1.00 1.00 1.00
100 50 0.98 1.00 1.00 0.97 1.00 0.98
100 100 0.98 1.00 1.00 0.98 0.99 0.97

very sharp precision with yit. However Bai and Ng’s (2002) IC2 performs slightly better

than Hallin and Liska’s (2007) HL2 criterion. With the estimates of ŷoit, IC2 performs much

better than HL2 and provides extreme accuracy even when N or T are small. For the case

of DGP 3, the probability of detecting zero factors does not become unity when N is large.

This is a rather natural result since the maximum value of λi is not bounded over N . When

λi is generated from the uniform distribution, this anomaly disappears completely. In sum,

the results in Table 1.1 support our theoretical claim in Lemma 1 very well even with finite

samples.
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Identifying True Factors with given Potential Factors

Next, we simulate Theorem 1.1 by considering the case where the potential factors are given.

The DGP is given in (1.1) with [Ω11,Ω12,Ω22] = [2, 0.5, 1] . Other cases are available online.2

Table 1.2 reports the frequencies at which the estimated factor number becomes zero.

That is, for the first and second factor case, we report Pr
[
#̂
(
ŷo11,it

)
= 0 or #̂

(
ŷo21,it

)
= 0
]

and Pr
[
#̂
(
ŷo12,it

)
= 0 or #̂

(
ŷo22,it

)
= 0
]

over 2,000 replications. The first four columns show

the probability of zero factor number when the potential factors are exact dominant leaders.

Note that when N is small (N = 25) , the probabilities of detecting the true factors seem

to be decreasing as T increases when IC2 is used. It may be due to the inaccuracy of

the estimation of the common factor. However when N is moderately large, such anomaly

disappears completely. IC2 always identifies the true factor with a great accuracy. Meanwhile

HL2 does not show this anomaly when N is small, but becomes less accurate compared to

IC2.

The last four columns in Table 1.2 report the case where the potential factors are not

true factors. Evidently, when N or T is small, both IC2 and HL2 fail to identify that the

potential factors are not true factors. However, as either T or N increases, the frequency

of estimating zero factors decreases very quickly. Note that IC2 detects much better when

N or T is small compared to HL2. Meanwhile HL2 performs relatively well when N or T

becomes large. In sum, the results in Table 1.2 support Theorem 1.1 strongly.

Table 1.3 reports the finite sample performance of Bai and Ng (2006)’s maxt τt test. The

underlying DGP is exactly same as that in Table 1.2. The nominal size is fixed to be 0.05.

The size and size-adjusted power are reported. As we discussed before, as N increases with a

fixed T, the estimated common factors become more accurate which leads the size distortion

of the maxt τt test to become lessened. However, as T increases, the size distortion increases

2The [1, 0.5, 1], [1, 0.2, 1], and the [2, 0.2, 2] cases are reported online along with other calculations (more
specific today).
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Table 1.2. Estimated Probability of Detecting True Factors

Pjt = Gjt (Exact) Pjt = Gjt + εjt (False)
IC2 HL2 IC2 HL2

T N 1st 2nd 1st 2nd 1st 2nd 1st 2nd
25 25 0.97 0.96 1.00 1.00 0.21 0.23 0.54 0.53
25 50 1.00 1.00 1.00 1.00 0.16 0.15 0.25 0.23
25 100 1.00 1.00 1.00 1.00 0.12 0.12 0.13 0.13
25 200 1.00 1.00 1.00 1.00 0.09 0.10 0.07 0.07
50 25 0.95 0.95 0.99 1.00 0.12 0.11 0.31 0.31
50 50 1.00 1.00 0.98 0.98 0.11 0.11 0.07 0.07
50 100 1.00 1.00 0.99 0.99 0.05 0.05 0.01 0.02
50 200 1.00 1.00 1.00 1.00 0.03 0.04 0.00 0.00
100 25 0.91 0.91 0.99 1.00 0.07 0.07 0.23 0.23
100 50 1.00 1.00 0.98 0.98 0.05 0.05 0.03 0.03
100 100 1.00 1.00 0.98 0.98 0.03 0.03 0.00 0.00
100 200 1.00 1.00 0.99 1.00 0.01 0.01 0.00 0.00
200 25 0.90 0.90 1.00 0.99 0.06 0.05 0.21 0.19
200 50 1.00 1.00 0.98 0.98 0.03 0.03 0.02 0.02
200 100 1.00 1.00 0.98 0.98 0.01 0.01 0.00 0.00
200 200 1.00 1.00 0.99 0.99 0.00 0.00 0.00 0.00

significantly. Meanwhile as Bai and Ng (2006) reported, the power of the test becomes

perfect.

Identifying True Factors when Potential Leaders are Unknown

When potential leaders are unknown, they must be estimated. We use the R2 criterion

discussed in Section 1.3. The DGP is given in (1.1) with [Ω11,Ω12,Ω22] = [1, 0.2, 1]. As we

mentioned earlier, we report all other cases online. We generate two approximate dominant

leaders for each factor as follows

Pjt = G1t + εjt/
√
T for j = 1, 2, and Pjt = G2t + εjt/

√
T for j = 3, 4.

The first four approximate factors are included in the panel data yit. That is, yit = Pit for

i = 1, 2, 3, 4. For the rest of yit, we impose the following restriction on the idiosyncratic
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Table 1.3. Bai and Ng’s maxt τt Test Rejection Rates (Size: 5%)

Size Power
T N 1st 2nd 1st 2nd
25 25 0.40 0.44 0.99 0.99
25 50 0.32 0.39 1.00 1.00
25 100 0.25 0.31 1.00 1.00
25 200 0.18 0.26 1.00 1.00
50 25 0.49 0.52 1.00 0.99
50 50 0.41 0.48 1.00 1.00
50 100 0.33 0.42 1.00 1.00
50 200 0.22 0.32 1.00 1.00
100 25 0.55 0.60 1.00 1.00
100 50 0.50 0.58 1.00 1.00
100 100 0.44 0.51 1.00 1.00
100 200 0.33 0.45 1.00 1.00
200 25 0.63 0.65 1.00 1.00
200 50 0.59 0.64 1.00 1.00
200 100 0.52 0.61 1.00 1.00
200 200 0.43 0.53 1.00 1.00

variance.

yoit ∼ iidN
(
0, σ2

i

)
, for σ2

i =
1

T

T∑
t=1

C2
it, Cit = λ′iFt. (1.27)

Without imposing this restriction, there is always a chance that some yit for i > 4 becomes an

approximate common factor with high λ1i and λ2i. Alternatively, we can generate λis from

a uniform distribution without imposing the restriction in (1.27). The simulation results are

similar each other, so only this case is reported.

We choose each four potential leaders by maximizing the R2 statistic from (1.25) and

(1.26). So the maximum number of potential leaders becomes eight. Next, we check whether

or not each potential leader is truly a common factor by estimating the number of the

common factors to the regression residuals in (1.13) and (1.14).

Table 1.4 reports the frequencies with which approximate dominant leaders are selected

as the true factors by combining the sieve method with the R2 criterion together. The
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Table 1.4. Identifying Potential Leaders by using R2

T N All Pjt Selected Only Pjt Selected
25 25 0.98 0.48
25 50 0.94 0.58
25 100 0.93 0.68
25 200 0.94 0.66
50 25 0.99 0.97
50 50 0.99 0.97
50 100 0.97 1.00
50 200 0.98 1.00
100 25 1.00 1.00
100 50 1.00 1.00
100 100 0.99 1.00
100 200 0.99 1.00
200 25 1.00 1.00
200 50 1.00 1.00
200 100 1.00 1.00
200 200 1.00 1.00

first column reports the correct inclusion rate that all four approximate dominant leaders

are selected as the true factors. The second column shows the frequency that only four

dominant leaders are selected as the true factors. Evidently, the sieve method with the R2

criterion suggested in

Section 1.3 works very well. When T is moderately large (T ≥ 50), the suggested method

selects only correct approximate dominant leaders as the true factors.

Finally, Table 1.5 reports the clustering results. As it shown in Table 1.4, the accuracy of

identifying the true factor is fairly sharp. Hence we assume that the approximate dominant

leaders are given. We don’t use the correlation method but rather use the criteria in (1.19)

since the selected leaders are only four. The first column in Table 1.5 reports the frequency

that the clustering algorithm selects correct members. The second column shows the false

inclusion rate. Obviously the criteria in (1.19) demonstrates the pinpoint accuracy.
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Table 1.5. Clustering Frequency

T N Correctly Clustered False Inclusion Rate
25 25 0.99 0.00
25 50 1.00 0.00
25 100 1.00 0.00
25 200 1.00 0.00
50 25 1.00 0.00
50 50 1.00 0.00
50 100 1.00 0.00
50 200 1.00 0.00
100 25 1.00 0.00
100 50 1.00 0.00
100 100 1.00 0.00
100 200 1.00 0.00
200 25 1.00 0.00
200 50 1.00 0.00
200 100 1.00 0.00
200 200 1.00 0.00

1.5 Empirical Examples

This section provides three empirical examples. The first example uses a state-level panel

of burglary rates in the U.S. from the FBI Uniform Crime Reports. The second example

uses Global Insight data on the nominal exchange rates of 21 currencies against the U.S.

dollar. The last example considers the three Fama French (1993) factors as potential factor

candidates for a panel of portfolios.

State Panel of Burglary Rates

The FBI Uniform Crime Reports contain state-level, annual burglaries per 100,000 persons

from 1965 to 2010 for the 50 United States. Natural logs are taken before first-differencing;

then the series are demeaned and standardized. In this example, both IC2 and HL2 estimate

one factor when kmax is set to 10. This result does not change if the starting year is allowed

to vary up to 1995. Hence, burglary rates are found to have one factor.
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Since the number of common factors is one, the homogeneity test on the factor loading

coefficients becomes our interest. Note that the underlying model can be re-expressed as,

yit = λ̄Ft +
(
λi − λ̄

)
Ft + yoit, (1.28)

where λ̄ is the average of the factor loadings. When the cross-sectional average is subtracted

from (1.28), λ̄Ft vanishes and the common component then becomes
(
λi − λ̄

)
Ft. If λi =

λ+Op

(
C−1NT

)
, then the resulting panel data after taking off the cross-sectional averages will

only have asymptotically weak factors.

Table 1.6 reports the result. Evidently, both IC2 and HL2 estimate zero factor number

after taking off both time series and cross-sectional averages, which implies that the factor

loadings are asymptotically homogeneous.

Table 1.6. Evidence of Homogeneity Factor Loadings in 50 State-level US Burglary Rates

Demeaning by IC2 HL2

Time Series Mean Only 1 1
Time Series Mean and Cross-Sectional Average 0 0

Nonetheless, we proceed with leadership identification next, using the time series mean

only.3 First, we select 3 potential leaders by choosing the individuals with highest R2 from:

F̂t = α1i + βiyit +mit for i = 1, . . . , 50. (1.29)

Including Connecticut as the regressor in (1.29) is found to maximize the R2 value. The

R2 values do not significantly decline between candidates, indicating that burglary rates are

seriously affected by the underlying factor.

Next, the following regression is performed for each leader candidate, l, to obtain the

regression residuals:

yit = α2i + φiyl,t + yoit for i 6= l.

3It would be unreasonable to use the time series mean and cross-sectional average case because it has no
common factors, so principal components estimation will perform quite poorly.
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If the factor number of these residuals is estimated to be zero, then yl,t is estimated to be a

leader. In both examples, every factor number estimation finds at least one common factor,

so no particular state becomes a leader in either example. The results are provided in Table

1.7.

Table 1.7. Leadership Estimation for a Single Factor

Potential Leader R2 Estimation Methods
Candidate Statistics IC2 HL2

Connecticut 0.783 1 1
Virginia 0.771 1 1

South Carolina 0.759 1 1

Exchange Rates

GMSW identify Euro/USD, Swiss Franc/USD and Japanese Yen/USD as key exchange rates

which explain the estimated common factors very well. GMSW justified their result in a

number of ways, and gave a thorough interpretation of the results. We re-estimate the

empirical common factors. There is one minor difference from GMSW. We neutralize the

effect of the numeraire currency by taking off the common time effects. Note that the bilateral

exchange rates with USD numeraire can be changed to those with Euro by subtracting the

log Euro/USD. To see this, consider the following simple example. The log spot Yen/USD

rate can be converted to the log Yen/Euro rate by subtracting the log Euro/USD rate.

ln Spot

(
Yen

USD

)
− ln Spot

(
Euro

USD

)
= ln Spot

(
Yen

Euro

)

This currency conversion makes the new bilateral exchange rates with Euro numeraire in-

cluded a common factor of the log Euro/USD. Hence by taking off the cross-sectional average

(or common time effects), we can eliminate the effects of the numeraire currency. We update
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21 bilateral exchange rates to 2012.M12 and estimated the factor number with the maxi-

mum lag length of 8. To be specific, we take natural log, take first difference, subtract the

cross-sectional average, and standardize each series before estimating the factor number.

Table 1.8 demonstrates how we select Euro/USD and Swiss Franc/USD as the determi-

nant of the first factor and Yen/USD as the determinant of the second factor. The first step

is the estimation of the factor number. Both IC2 and HL2 criteria estimate two factors and

this result does not change at all regardless of the different starting samples. It is worthy

noting that the estimation result based on HL2 criterion may change the order of the cross-

sectional units since the HL criterion is based on stability of subsample analyses both over

N and T. For this example, we allocate three empirical factors, Euro/USD, Yen/USD, and

Swiss Franc/USD as i = 2, 3, 4 respectively. Note that GMSW estimate three factors.

As the second step, we ran (1.25) and (1.26) and selected four exchange rates of which

R2 are highest. For the first factor, Euro, Taiwan, Thailand, and Philippine currencies

against USD are selected. For the second factor, Euro, Swiss, Japan and Australia currencies

against USD are selected. We ran (1.13) and (1.14), obtained the regression residuals, and

checked whether or not the estimated factor number becomes zero. From the first regression,

Euro/USD is identified as the approximate factor and from the second regression, Swiss Franc

and Japanese Yen against USD are identified as the approximate factor. Hence by the end

of Step 3, we have the three approximate factors in our hands.

As the final step of clustering, we check the correlation matrix among three factors.

Euro/USD is highly correlated with Swiss Franc/USD meanwhile Japanese Yen/USD seems

to be isolated from the other two. From this result, we hypothesize that Euro/USD and

Swiss Franc/USD are the approximate factor for the first empirical factor, and the Yen/USD

becomes the second empirical factor. We verify our result by running (1.19) and find that

IC2 pairs Euro and Swiss Franc as the same factor. Note that HL2 gives the different result.
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Table 1.8. Identifying Common Factors in 21 Spot Rates

Step 1: Estimation of the Factor Numbers
IC2 HL2

21 Spot Rates 2 2

Step 2 & 3: Selecting Potential Leaders by R2 and Identifying Leaders

Augmented with F̂1t IC2 HL2 IC2 HL2 R2

Euro 0 0 0 0 0.624
Taiwan 1 1 1 0 0.604
Thailand 1 1 1 1 0.572
Philippine 1 1 1 1 0.566

Augmented with F̂2t

Euro 0 0 0 0 0.608
Swiss 1 1 0 0 0.582
Japan 1 1 0 0 0.453
Australia 1 1 1 1 0.447

Step 4: Clustering Leaders
Correlation Matrix

Japan Swiss
Euro 0.047 0.664
Japan 0.291

Verifying Membership by using (1.19)
Regressors IC2 HL2

Euro &Swiss 1 1
Euro &Japan 0 1

Fama-French Three Factor Model

One of the most popular examples in factor analysis is the Fama-French portfolio theory.

Fama and French (1993) consider three factors for portfolio returns, denoted as follows:

‘Market’, ‘SMB’, and ‘HML’. We are interested in testing if these empirical factors are actu-

ally the underlying unobserved. This is not a leadership model; rather, this is an exogenous

factor test. The famous Fama-French three factor model is given by

yit = rft + α1i (Mktt − rft) + α2iSMBt + α3iHMLt + yoit,
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where rft is the risk free return rate. For our analysis, we use annual average value portfolio

returns for 96 portfolios plus the three Fama-French factors from 1964 to 2008. The data

available on Kenneth French’s website begins in 1927 and ends in 2012. Our sample is

chosen to avoid missing data before 1964 and structural market changes from the 2008

financial collapse. The returns are demeaned (by time series averages) and standardized.

The maximum factor number is set to be 10. According to this theory, yit shares the same

common factor of rft. Hence we take off the cross-sectional average first, and then choose

Mkt, SMB and HML as the known potential factors. We estimate the number of common

factors after standardizing the sample. We denote this sample as ỹit to distinguish the sample

yit where the cross sectional averages are not taken off. Table 1.9 reports the summary of the

results. First, both IC2 and HL2 estimate 2 factors surprisingly. This result does not change

at all depending on the different ending years. This result implies that if Fama-French three

factor model were indeed correct, then one of the three factor loadings must be homogeneous.

Moreover if we don’t take off the cross-sectional average, then we find three factors.

To identify this, we ran (1.19). That is, the panel is regressed on each hypothesized

factor, Mkt, SMB, and HML:

ỹit = γj,iPj,t + ej,it,

where j = Mkt, SMB, and HML separately, one at a time. The factor number is estimated

for each of the residual panels from these regressions. SMB and HML are found to be leaders.

‘Market’ is not found to be a leader. Next, the following regression is performed to see if

SMB and HML become the same or different factors:

ỹit = γ∗1,iPSMB,t + γ∗2,iPHML,t + e∗it.

The estimated factor number of the residual is found to be zero. Hence, SMB and HML

must account for different factors.
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Table 1.9. Fama French Subsample Analysis for Leadership Estimation by Ending Year
(Starting Year: 1964; N = 99)

Ending Year Estimated Factor Number (IC2)
with with Regressand: ỹit, Regressor
yit ỹit Mkt SMB HML SMB & HML

2008 3 2 2 1 1 0
2007 3 2 2 1 1 0
2006 3 2 2 1 1 0
2005 3 2 2 1 1 0
2004 3 2 2 1 1 0
2003 3 2 2 1 1 0
2002 3 2 2 1 1 0
2001 3 2 2 1 1 0
2000 3 2 2 1 1 0

To see whether or not the factor loading coefficients on Mkt are homogeneous, we estimate

the first common factor without taking off the cross-sectional average, yit. And then we

regress F̂1t on the risk free rate, rft, and Mktt− rft. This regression identifies the weighting

coefficients between rft and Mktt− rft. The fitted value, F̃1t, is obtained approximately the

following weights.

F̃1t = −0.0227rft − 0.0032 (Mktt − rft) .

Next, in Figure 1.1 we plot the estimated first common factor, the fitted value of F̃1t, and

Mktt − rft together after standardization of each series. Evidently, the fitted value, F̃1t, is

more similar to the estimated factor than the fit by only market. After 1972, Mkt-Rft beats

the fitted values by Rft and Mkr-Rf in only 3 time periods. From this empirical evidence,

we conclude that the factor loadings on Mkt are almost homogeneous across each portfolio.

1.6 Conclusion

Factor analysis has become an increasingly popular tool in empirical research. Because there

is no well-defined strategy for factor identification, researchers have been forced to choose
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Figure 1.1. Missing Factor by Taking off Cross-Sectional Averages

between two outcomes. A researcher can either ignore any economic interpretation of the

factor (perhaps the most important part of their model), or the researcher can speculate

about the determinant without any concrete justification.

While this testing issue is a central problem, the thorny issue is identifying which par-

ticular time series to claim is the determinant. In many contexts, after estimating a factor,

the investigator is left with a time series which could be any marco-economic variable. A

strategy is needed for selecting which variables could be an underlying factor. This issue be-

comes even more complicated when there are multiple factors because PC estimation yields

a rotation of the underlying factors. Any particular variable could be a determinant even

when such a variable has somewhat low correlation with each estimated factor.

This paper provides simple and effective solutions to these problems. First, a new method

is described for testing if a particular variable is the common factor. Second, by modeling
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endogenous common factors, a strategy is developed for picking which variables could be

determinants without requiring researchers to pore over the universe of exogenous variables.

The performance of these methods is studied both in theory and in practice. Theoretically,

the developed procedure correctly identifies the leader whenN and T jointly approach infinity

under the minimal assumptions of Bai and Ng (2002). Monte Carlo simulation shows that

the procedure performs quite well in the finite sample. The procedure is then applied to

three empirical examples. The resulting estimation performs very well in practice.
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ABSTRACT

This paper argues that murder is fundamentally different from other crime rates by using an

approximate factor structure estimated by principal components. Using factor number esti-

mation from Bai and Ng (2002), all state-level crime rate panels (e.g.,, murder, burglary) in

the U.S. are found to have single common factors after serially demeaning. However, cross-

sectionally demeaning reveals zero common factors in every panel except murder implying

that the national average is an excellent proxy for the common factors apart from murder.

Common factor identification developed in Parker and Sul (2013) reveals that the determi-

nants for the murder rate factor are the murder rates of California and Texas. This is taken

as evidence that drug-trafficking is the source of cross-sectional dependence of state-level

murder rates.

38
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2.1 Introduction

U.S. crime rates exhibit serious cross-sectional dependence. In fact, apart from murder, this

paper finds that all U.S. state-level crime rate series are correlated with each other. When

the burglary rate in California increases, the burglary rate in Maine – which is 3,000 miles

away – is also likely to increase. To some extent, this result is not puzzling at all. Many

empirical studies have tried to explain state-level crime rates using common causes. If state-

level crime rates can be well-understood, it is assumed that the overall national crime rate

will be well-explained. For example, Levitt (2004) identifies four factors that explain the

decline: the number of police, rising prison populations, the receding crack epidemic, and

the legalization of abortion. If all states share these four trends, then it is obvious that

crime rates between states should be correlated. The puzzle then becomes why murder rates

are not highly correlated between states. In other words, the conventional factors may not

effectively explain the movement of murder rates across states.

To investigate the source of the puzzle, this paper takes a different empirical strategy from

the conventional regression method. In these conventional regression models, crime rates

become dependent variables while economic, social, demographic, and political variables

become potential causes of crime (e.g., Moody and Marvell 2010). The conventional methods

treat the cross-sectional dependence as nuisance information which may hamper statistical

inference rather than as important, additional information. This paper considers cross-

sectional dependence to be the most important ingredient of crime panel data. Under the

approximate common factor representation, an unknown common factor becomes the source

of this cross-sectional dependence. By estimating the unknown common factors and their

influences (factor loading coefficients), the variation of the panel data can be decomposed

into the variation due to common components and that due to purely individual-specific (or

idiosyncratic) components. When the common components are more dominant, the degree

of the cross-sectional dependence in the panel data becomes more serious.
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By analyzing cross-sectional dependence in crime rates, this paper finds the following

important economic implications: First, all crime rates including the murder rate have single

common factors. Second, except for the murder rate, the impact of the unknown common

factor on the state-level crime rates is extremely similar between states, after controlling for

fixed effects. In other words, the national average of the crime rates except for the murder

rate can explain the state-level crime rates fairly well. As the crime rate at the national level

increases, the state-level crime rate in every state is likely to increase as well. However, for

the murder rate case, such homogeneous influence by the national average does not apply.

That is, an increase in the national average murder rate does not necessarily mean the

increase in the murder rate in a particular state.

The approximate common factor representation has been exponentially used mainly in

macroeconomic and financial studies where the common factors usually need to be identified.

A few examples follow. Stock and Watson (2005) uses a dynamic factor structure to explain

common shocks in 132 macroeconomic time series. To improve forecasting, Bernanke, Boivin,

and Eliasz (2005) uses factor analysis as a data reduction technique to model how central

banks read market signals when making policy choices. However, as long as the common

factors are unknown, the source of the cross-sectional dependence is also unknown. A re-

cent paper by Parker and Sul (2013) overcomes this issue and suggests a simple and novel

identification strategy for the unknown common factors. This paper adopts their method to

identify the unknown common factors to the murder rates.

This paper finds that, surprisingly, the murder rates in California and Texas explain the

factor estimated by principal components very well. Meanwhile, in other crime rates, there

are no such endogenous factors. To understand the common factor for murder, the homicide

rate in California and Texas must be analyzed and understood. There is something special

in Texas and California, which makes these states particularly interesting. These states are

both known for being major points of illegal crossing from Mexico to the U.S. for many
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people and goods, most notably, for drug smuggling operations (Andreas 2009). There are

many other locations where smuggling could occur, e.g., Florida. Yet, because these routes

are quite direct from South America to drug markets in the U.S. and because these routes

are not heavily policed (in number and in punishment), Texas and California have become

extremely popular points-of-entry for drug-traffickers.

More interestingly but shockingly, the influence of the murder rate factor on each state is

very similar to the drug-trafficking routes. The murder rates in those states on the routes are

highly correlated with the murder rates in Texas and California. As many empirical studies

found, drugs influence many other types of crime. Directly and indirectly, using drugs causes

crime. However, this paper considers the impact of drugs more widely, particularly on the

murder rate. That is, the murder rates are high wherever drugs are carried through a state.

Due to the difficulty of obtaining quantitative data for drug-trafficking, this paper uses the

rather crude, inter-ocular trauma test. To support such crude empirical evidence, this paper

investigates further to find the source of the murder rates inside cities in Texas and California.

If the conjecture is correct, then the well-known centers for drug distribution – Dallas/Fort

Worth and San Diego – should be responsible for the murder rates of Texas and California

cities, respectively. The empirical results in this paper pinpoint that the murder rate in Fort

Worth and the murder rate in San Diego are equivalent to the murder factors in Texas and

California.

The remainder of the paper is organized as follows: Section 2.2 provides initial evidence

for a single common factor in each crime panel. Also, for crime rates besides murder, the

common factor is shown to be well-explained by the national average or cross-sectional

average of all the states in the U.S., indicating that murder is fundamentally different from

other types of crime. Section 2.3 uses leadership estimation developed in Parker and Sul

(2013) to pin-down the factors endogenously, finding that Texas and California are the

leaders for murder rates. Section 2.4 shows how drug-trafficking can potentially explain the

leadership of these key states. Section 2.5 concludes.
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2.2 Anatomy of Cross-Sectional Dependence in Crimes

This section consists of three parts: First, this section describes the structure and economic

meaning behind common factor modeling. Next, factor number estimation is used to show

that all crime rates have one common factor. Also, factor number estimation can be used to

show that other crime rates besides murder can be well-explained by their national averages.

Lastly, the murder and burglary factors are distinguished by use of variance decomposition

to show further evidence that murder is different from other crime rates.

Approximate Common Factor Model

The classical common factor or principal component (PC) analysis has been popularly used

in psychology where the independent variables are usually unknown, and in social science

where data reduction decreases the number of dependent variables used to specify particular

models. Recently theoretical development in panel data econometrics allows researchers

to overcome some technical difficulties when estimating the unknown number of common

factors and to perform statistical inference on the estimated common factors. These rapid

developments have enabled empirical scientists to apply the approximate common factor

model to various areas including finance, macroeconomics and public economics.

An explanation of the common factor model and the notation used in this paper follows.

Let yit be a crime rate of the ith state at time t where i = 1, ..., N and t = 1, ..., T . The

cross-sectional dependence among yit can be modeled by the following approximate common

factor structure:

yit = λiFt + εit, (2.1)

where the number of common factors is assumed to be one for simplicity. Note that the

individual fixed effects are not expressed in (2.1) for notational convenience. The inclusion

of fixed effects does not alter the results at all. The common factor, Ft, is the source of
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the cross-sectional dependence. The factor loading coefficients, λi, represent the economic

distance between the common factor Ft and yit. The product of the two, λiFt, is called the

common component. The left-over term becomes the individual specific or idiosyncratic

term, εit. It is typically assumed to be independent of the common component and exhibits,

at most, weak cross-sectional and serial dependence. The idiosyncratic term represents

state-specific crime variation, i.e., variation which happens in one state and none of the

others. In contrast, the common component represents variation which happens in all states

together. The idiosyncratic component and the common component together represent all

of the variation in crime rates.

The common factor affects each state but to a different degree. A rise in the national

average has a large impact on states with high λi values and a smaller impact on states with

λi close to zero. The loading may be related to some important characteristics of the state,

for instance whether the state is more or less rural. The degree of correlation between any

two states is determined by their λiFt values. That is, the correlation between any two states

(i and j) becomes

E [yityjt] = E
(
λiλjF

2
t

)
+ E [εitεjt] = E

(
λiλjF

2
t

)
,

since usually the cross-sectional dependence among idiosyncratic components can be ignored

or assumed to be zero.

The influence of the common factor on each individual state can be measured by the

following variance decomposition.

V (yit) = V (λiFt) + V (εit) , (2.2)

since typically the correlation between the common and idiosyncratic components is small

enough to be ignored. This variance decomposition explicitly shows how variation in the

factor explains variation in the state-level crime rate.
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Because Ft is unknown, (2.1) cannot be estimated by least squares regression. Hence,

Ft is typically estimated by the PC of yit, then (2.1) is estimated by ordinary least squares

substituting F̂t for Ft. The PC of yit are the largest eigenvectors of the estimated correlation

matrix of yit. The PC are standardized so that Ft does not become unworkably small as T

becomes large.

Evidence from Factor Number Estimation

The data consists of state-level crime rates from the FBI’s Uniform Crime Reports (UCR

hereafter) from the years 1971 to 2010 for the 50 United States.1 The District of Columbia

is not included in the panel as is the prevailing standard in the literature.2 The crime rates

(defined as number of crimes per 1000 persons) are considered for the following types of

crime: murder and non-negligent manslaughter, forcible rape, aggravated assault, robbery,

burglary, larceny theft, and motor vehicle theft.

The factor number is estimated by using two of the most popular methods: Bai and Ng

(2002)’s IC2 and Hallin and Liska (2007)’s IC2 criteria. They will be called BN and HL,

respectively, throughout the paper. BN usually performs better than HL with a small N

and T sample, while HL performs relatively better than BN in samples with large N and

T values (Parker and Sul 2013). For almost all cases, the BN and HL criteria estimate the

same factor number. However, whenever BN and HL estimate different numbers of factors,

the largest result is used in this paper. Later, the Parker and Sul (2013) estimation will be

discussed, which relies heavily on factor number estimation. Using the larger factor number

1All types of the crime data are available from 1965. However the first 6 years of the data were not
included in the sample in order to obtain the robust empirical results. The inclusion of the first six years
affects the factor number estimation. For example, in the case of robbery, the estimated factor number
becomes heavily dependent on the choice of the starting year when the data starts from 1965. To avoid such
sensitive results, we do not include the first six years.

2D.C. crime rates behave much like a city or metropolitan area. Crime is significantly higher in D.C.
than any other ‘state’ series. In 2010, the murder rate for D.C. was .22 murders per 1000 people, almost
double that of any state.
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naturally reduces the false rejection rate when the null is true. Hence, this cautious decision

rule is very conservative.

For factor number estimation, the natural logarithm of each time series of data is first

differenced then standardized by its variance. Table 2.1 shows the estimation result. Sur-

prisingly, all crime rates have single common factors.

Table 2.1. Factor Number Estimation for Various State-level Crime Rate Panels

Crime Factor Number Estimation
Before taking off After taking off

cross-sectional averages cross-sectional average
Murder 1 1
Rape 1 0

Robbery 1 0
Assault 1 0

Burglary 1 0
Larceny 1 0

Auto-theft 1 0

While common factors are rarely included in crime regressions, many applied papers

have included common time effects (e.g., Donohue and Levitt 2001; Moody and Marvell

2010). Common time effects are common factors where the factor loadings are perfectly

homogeneous. It is natural to wonder whether or not common time effects can account for

the single common factor present in all these crime data sets. This can be established by

testing for homogeneous factor loadings. If the factor loadings are homogeneous, then the

following holds:

ỹit = yit −
1

N

N∑
i=1

yit = (λi − λ)Ft + εit −
1

N

N∑
i=1

εit = εit −
1

N

N∑
i=1

εit if λi = λ for all i.

That is, removing the cross-sectional average from the original series eliminates any cross-

sectional dependence fairly well. Hence, the factor number in ỹit naturally becomes zero.

The results are also shown in Table 2.1.
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Evidently, after controlling for common time effects, all crime rates have zero common

factors except for murder. This result implies that simple national averages of crime rates

(besides murder) represent the common behavior of these rates very well, even at the state-

level. To confirm whether or not the results in Table 2.1 are robust, the same estimation

procedures are repeated by changing the starting sample point from 1971 up to 1974 and

the same results are obtained.

Evidence from Variance Decomposition

Variance decomposition shows how the factor affects each state series in a manner which is

easily interpretable. Here, the common and idiosyncratic variances are reported as ratios to

the total variance in (2.2). Because the correlation between the factor and the idiosyncratic

component is assumed to be small, the common and idiosyncratic variance ratios sum to

one. Note that the variance decomposition is different for each state series because each

state has different loadings and idiosyncratic errors. The common variance ratio indicates

how well the factor accounts for variation in a particular state. The reader may find it easier

to interpret the common variance ratio as an R2 in the regression of the state crime series

on the estimated factor.

Table 2.2 reports selected cases of the variance decomposition for murder rates. The

average common variance decomposition ratio (Average Value) for murder rates is relatively

small, only 16.8%. This indicates that most murders are likely to be uncorrelated. Cross-

sectional dependence probably arises from one specific ‘sub-genre’ of murder. Later, this pa-

per argues that the source of cross-sectional dependence in murder rates is drug-trafficking.3

The three highest, lowest, and middle common component variance decomposition ratios are

also reported in Table 2.2, ranked by their common variance ratios. The highest states have

3Note that in Levitt (2004), Steven Levitt states that he believes that 17% of murders are caused by
drug-trafficking. While Levitt does not explain his exact reasoning (as the paper is a perspectives piece), the
estimated variance decomposition here would seem to verify his estimate if the factor is indeed drug-related.
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Table 2.2. Variance Decomposition for State-Level Murder Rates

State Rank Variance Decomposition
Common Idiosyncratic

Average Value n.a. 16.8% 83.2%
California 1 59.1% 40.9%

Texas 2 58.6% 41.4%
Pennsylvania 3 46.5% 53.5%
Washington 24 13.5% 86.5%

Massachusetts 25 12.7% 87.3%
Arizona 26 11.9% 88.1%
Montana 48 0.2% 99.8%

Idaho 49 0.1% 99.9%
Alaska 50 0.0% 100.0%

The data consists of a UCR sample from 1971-2010. A
single factor is estimated by PC. The sample is ranked by
correlation to the factor or common component value.

common variance of almost 60% while the lowest states have common variance of essentially

0%. This pattern is consistent with the findings in Section 2.2.2 regarding factor number

estimation. The murder factor affects each state heterogeneously, indicating a strong factor

structure whether or not cross-sectional averages are removed. Further, because the low

loading states are so close to zero, it is clear that the murder factor only affects a few key

states. States with small loadings (e.g., Idaho and Alaska) are virtually unaffected by the

murder rate factor. States like California and Texas drive much of the movement in the

national murder rate. The importance of these states may relate to the presence of large

cities, since California has many large cities (e.g., Los Angeles and San Francisco) and Texas

has two of the five largest metropolitan statistical areas (Dallas and Houston).

Table 2.3 details another variance decomposition but for burglary instead of murder.

Table 2.3 is organized similarly to Table 2.2. Burglary is chosen arbitrarily, as all the

crime rates besides murder have similar patterns. The complete results for every crime
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rate and every state are available on the author’s website. With burglary, the average

common variance is much higher than that for murder rates. Further, in keeping with

Section 2.2.2, all states but Alaska are affected by the burglary factor somewhat similarly.

There may be some between-state variation, but no state seems completely uncorrelated with

the estimated factor. The factor affects each state similarly, indicating that no particular

state is responsible for national movement in the burglary rate.

Table 2.3. Variance Decomposition for State-Level Burglary Rates

State Rank Variance Decomposition
Common Idiosyncratic

Average Value n.a. 49.1% 50.9%
Illinois 1 76.7% 23.3%

Connecticut 2 72.6% 27.4%
South Carolina 3 72.2% 27.8%

California 24 51.1% 48.9%
Nebraska 25 50.2% 49.8%

Maine 26 49.2% 50.8%
North Dakota 48 17.6% 82.4%

Montana 49 11.5% 88.5%
Alaska 50 6.9% 93.1%

The data consists of a UCR sample from 1971-2010. A
single factor is estimated by PC. The sample is ranked by
correlation to the factor or common component value.

Graphically, the patterns described in Tables 2.2 and 2.3 can be visualized by averaging.

When cross-sectional averages (one average per year) are taken of single-factor panels, the

resulting time series is quite similar to the common factor (Pesaran 2006):

1

N

N∑
i=1

yit =

[
1

N

N∑
i=1

λi

]
Ft +

1

N

N∑
i=1

εit = λ̄Ft + ε̄t (2.3)

where λ̄ and ε̄t are the averages of the factor loadings and εit errors, respectively. Because

ε̄t, the average of mean zero errors, is small, the cross-sectional average is quite close to the
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factor multiplied by a constant. This will be true regardless of the size of the factor loadings

unless the factor loadings add to zero. Figure 2.1 plots the cross-sectional averages for the

three states with largest loadings (High Loading), the three states with smallest loadings

(Low Loading), and all 50 states (All States). The cross-sectional averages are natural-

logged before being demeaned and standardized. Panel A shows this plot for murder rates;

Panel B shows this plot for burglary rates.

Panel A: Murder Rates Panel B: Burglary Rates

Figure 2.1. Log Cross-Sectional Averages for High Loading, Low Loading, and All States

In Panel B, the cross-sectional averages are all quite similar to each other because the

factor affects all 50 states. However, in Panel A, the Low Loading states are extremely

different from the High Loading states and All States because the factor does not affect the

Low Loading states. The Low Loading series looks like a white noise process because it is an

average of a mean zero process. The process seems different from absolute zero because the

series is standardized. Therefore, while other crime factors can be well-explained by their

national averages (a weighted cross-sectional average), the factor for murder cannot be.

2.3 Common Factor Identification

Parker and Sul (2013) develops a way to test if a particular time series, Gt, is equivalent to

the underlying factor, Ft. This section briefly explains this method then applies it to the
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crime data. Begin with the usual factor model in (2.1). Now consider running the least

squares regression:

yit = βiGt + υit. (2.4)

How many factors are in the {υ̂it} panel? If Gt is equivalent to Ft, Parker and Sul (2013)

explains that the usual factor number estimator from Bai and Ng (2002) and the subsam-

ple version from Hallin and Liska (2009) consistently estimate that {υ̂it} has zero common

factors. When Gt is substantially different from Ft, {υ̂it} will have one common factor. Es-

sentially, factor number estimation can be used to test if a given time series is the underlying

common factor. This is a type of ‘common factor identification.’

This is an interesting result, but the question remains: Where can a researcher find the

appropriate time series to test? Parker and Sul (2013) also provides a way to check to see

if a particular individual in the panel (time series) is equivalent to the common factor (time

series). The method involves regressing the estimated factor, Ft, on each individual, yit, and

obtaining the R2 value. The individuals with high R2 values are typically called ‘candidates.’

Then these individuals can be used one at a time in (2.4). That is,

yit = bc,iyct + ec,it for all i 6= c (2.5)

for each leader candidate i = c. The factor number of {êc,it} is now an estimator for whether

or not state c is the factor. If c is the factor, it is called a ‘leader.’

The leadership model provides a powerful way to identify common factors so that the

cross-sectional dependence has a specific economic interpretation. The leader affects all the

individuals in the panel. The amount which it affects them, bc,i, can be thought of as an

economic distance. Individuals with large bc,i values follow the leader closely. Individuals

with small bc,i values are virtually unaffected by the leader.

For the crime data, leadership is only possible for the murder panel. For crimes besides

murder, each state series is similar to the others. Section 2.2 shows that every state has the
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same factor loading for crimes other than murder. That is,

λi = λ for each state, i,

where λ is an arbitrary constant value. Hence, if a leader is present, each state will be

affected by the leader equally. Every state will have the same economic distance to the

leader. This is highly unlikely. Suppose that the burglary rate in New York is the leader.

New Jersey will have the same distance to New York as Alaska. The leadership model of

cross-sectional dependence is incompatible with the pattern present in these other crimes.

For each type of crime, three potential leaders are selected using the highest R2 value

described above. The factor number is estimated as before, i.e., the maximum of the BN and

HL estimators. Only the murder panel is found to exhibit leadership (Table 2.4). The leaders

for murder are Texas and California, where the residual factor number becomes zero. All

the other states and crimes are found to have a single residual factor. Texas and California

have R2 values close to 0.6. The R2 quickly diminishes for other states. Other crimes show

no stark contrasts in R2 values. These patterns in R2 validate the leadership findings. The

findings confirm the aforementioned theory, that no crime besides murder can have a leader.

As before, subsample analysis of the factor number is performed using five subsamples of

varying starting year. The subsample analysis verifies the findings in Table 2.4 in all cases,

but only the murder rate residuals for California and Texas are reported below (Figure 2.2).

Clearly, California and Texas are leaders in this data.

When two series become leaders in the data, they are called ‘approximate dominant

leaders.’ The leaders are both quite close to the factor, but the factor is a combination of

the estimated leaders. Therefore, the estimated murder factor is regressed (least squares) on

the murder rates of California and Texas:
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Table 2.4. Leadership Estimation for Crime Panels (Bold: Leader; Parentheses: R2 value)

Crime Candidates for Leadership
1st Candidate 2nd Candidate 3rd Candidate

Murder California Texas Pennsylvania
(0.606) (0.601) (0.477)

Rape Ohio Texas Florida
(0.687) (0.647) (0.642)

Assault Florida Illinois Washington
(0.724) (0.642) (0.626)

Robbery Alabama Illinois Virginia
(0.725) (0.724) (0.646)

Burglary Illinois Connecticut South Carolina
(0.786) (0.745) (0.740)

Larceny New Jersey North Carolina Illinois
(0.845) (0.831) (0.794)

Auto-theft North Carolina Arizona Pennsylvania
(0.680) (0.647) (0.622)

Leadership estimation performed as in Parker and Sul (2013). Bold indicates
that zero factors are found in the residual from (2.5). R2 values reported are
the R2 from the regression of the estimated factor on the individual state-level
time series in question.

Panel A: Removing California Result Panel B: Removing Texas Result

Figure 2.2. Factor Number Subsample Analysis for Leadership in Murder Rates
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F̃t = 0.5002×∆ ln(Californiat) + 0.4925×∆ ln(Texast).
4

Essentially, the murder factor is half of the murder rate in California and half of the murder

rate in Texas. These series fit the estimated murder factor very well considering that the

factor is estimated and the crime rates themselves suffer from some measurement error

(Figure 2.3).

Figure 2.3. Leaders for Homicide Rates and Estimated Factors

2.4 Drug-Trafficking in the United States

Factor identification is useful because it provides an economic interpretation of the underlying

factor. This section explains how the leadership of California and Texas can be interpreted

as drug-trafficking.

4Because these series are quite similar to each other, there may be concerns about colinearity. Note that
the correlation between the murder rate in California and the murder rate in Texas is only 0.585.
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Cross-sectional dependence in murder is confusing in itself. Are extramarital affairs in

California somehow related to those in South Carolina? It’s hard to believe that many

homicides are somehow correlated. Evidence from variance decomposition reveals that only

16.8% of the variation in homicide rates is due to the common factor. This implies that most

murders are unrelated, while a few are essentially correlated. Also many of the state series

have loadings near zero, which indicates that the cross-sectional dependence is confined to

only specific places or specific murders. The question then becomes: Which murders are

cross-sectionally dependent?

To pin down an economic explanation for cross-sectional dependence in murder, it is

useful to consider what California and Texas have in common. Texas and California are the

second and third largest states in the U.S. by land-area. As mentioned before, these two

states have many large cities. This could imply that Texas and California are leaders by

aggregation. This case is further explained and disproved below. It seems that besides being

large, the leadership of Texas and California can only be explained by the border these states

share with Mexico. Many illegal aliens cross this border each year. The U.S. Government

Accountability Office estimates that 450,000 immigrants per year crossed the border from

Mexico to the U.S. illegally in the period from 1998 to 2004 (Government Accountability

Office 2006). Because this illegal crossing is so common, it is relatively easy for traffickers

to smuggle drugs into the U.S. using these same routes (Andreas 2009). Each state has four

of the twenty-eight High Intensity Drug Trafficking Regions as defined by the U.S. Office

of National Drug Control policy, and both states are well-known points of entry for drug

smugglers.

Drugs can be smuggled into the U.S. in a number of ways. Marijuana is sometimes

smuggled by train and ultralight aircraft (Department of Justice 2011). Tunnels connecting

Juarez to El Paso are well-known, difficult to detect passages into the country. MDMA is

commonly brought into the U.S. using the border with Canada. Some smugglers also bring
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drugs into the U.S. by sea and plane, although these methods are becoming less-popular as

detection technology improves (Department of Justice 2011). The primary entrance to the

U.S. is through the Southwest border where patrol is relatively minimal. Only two states

besides Texas and California share a border with Mexico, Arizona and New Mexico. The

most direct land-route to the U.S. from Central America is through Mexico and then Texas.

California has a large market for drugs and can be easily accessed by taking a boat to Baja

California and traveling north on land.

It is difficult to find other evidence for drug-trafficking due to the scarcity of available

data. The data which do exist are riddled with measurement error problems because drug-

trafficking is an illegal activity (Fryer, Heaton, Levitt, and Murphy 2006). Some data exists

for drug usage and the relationship between drug usage and crime. However, it is a mistake to

rely on usage data because drug-traffickers are not necessarily users and vice versa. Further,

arrests for drug-trafficking are useless because they depend heavily on enforcement levels,

police technology, and the transportation method employed by the trafficker. Drug sales are

inappropriate because final consumers are not located where trafficking occurs. Essentially,

there is no convenient way to correctly pin down an exogenous measure of trafficking.

However, further analysis can be performed to check the leadership of Texas and Cal-

ifornia and rule out aggregation as a possible explanation for the leadership of Texas and

California. Potentially, these states could be leaders because, when only a single factor

is present in the data, cross-sectional averages tend to estimate the factor as in (2.3). Be-

cause California and Texas have many large metropolitan statistical areas (e.g., Los Angeles,

San Francisco, Dallas, Houston), these state-level crime series could be interpreted as cross-

sectional averages of the underlying city-level crime series. Therefore, California and Texas

might appear to be the factor because of state-level aggregation. To rule out this possibility,

the two leader states are disaggregated into the city-level crime rates (one panel per state)

and leadership is again estimated as before (Table 2.5). The data are natural logged, de-

meaned by the time series average, and standardized so that one common factor is present
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in both data sets. UCR data is only readily available and accurate from 1985 to 2010 for

city-level crime rates. Fort Worth and San Diego are found to be leaders for within-state

murder rates. San Diego is quite close to Mexico (less than 21 mi.) and well-known for its re-

lationship to drug movement (Andreas 2009). Fort Worth is a part of the Dallas Fort-Worth

Denton MSA (henceforth DFW), a known nexus of drug distribution. Because these data

are disaggregated, this result verifies the claim that leadership is related to drug-trafficking

and not within-state aggregation.

Table 2.5. Within-State Murder Leadership

State Panel Sample Size Candidate Residual
(N =) for Leader Factor Number

Texas 23 Fort Worth 0
California 39 San Diego 0

It may seem logical to use city-level data throughout the U.S. as a further explanation.

However, it is impossible to perform this leadership identification correctly because cities

around the U.S. have extremely correlated crime rates. Table 2.6 shows the correlation

between the four largest cities in the U.S. and previously determined leaders. The data

is obtained as before, from the FBI Uniform Crime Reports from 1985 to 2010. Presently,

there is simply not enough data for this city-level analysis throughout the U.S. Cross-country

leadership analysis is also impossible because of data availability. However, evidence that

city-level murders are highly correlated further indicates that drug-trafficking is the source of

cross-sectional dependence in murder rates in the U.S. City-level murders could be correlated

because trade and distribution of cocaine and heroin are more common in urban areas.

To provide more evidence for the drug-trafficking theory, the estimated factor loadings

from the regression in (2.5) are plotted in Figure 2.4. As stated above, the factor loading

represent economic distances to particular sources of cross-sectional dependence (here Cal-

ifornia and Texas). Clearly, the factor has a large influence on more urban states. Drugs
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Table 2.6. Correlations to Known Leaders

City-Level Correlation to
Murder Rate Fort Worth San Diego

New York 0.891 0.969
Los Angeles 0.889 0.912

Chicago 0.703 0.693
Houston 0.813 0.926

Figure 2.4. Map of Leadership in the U.S.

enter the U.S. from Mexico through the Southwest and travel to the Midwest and Northeast.

From Figure 2.4, it is also possible to assess which drug is the source of cross-sectional depen-

dence in states. The factor does not load heavily on rural states, where methamphetamines

are typically produced. Further, the factor does not load heavily on all states near Canada

which are highly influenced by the trafficking of MDMA.

Figure 2.5 shows a map of marijuana trafficking reproduced from the 2011 Drug Threat

Assessment. The Drug Threat Assessment is a source of information which was published

annually by the U.S. Department of Justice until 2011. The data for this map are collected

from local law enforcement agencies concerning arrests and other information on major
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routes drug-traffickers used to move product to market from 2008 to 2010. From eyeball

estimation (also known as the inter-ocular trauma test in some literatures), it is possible to

discern that the primary routes seem to correspond with high loading areas from Figure 2.4.

Low loading areas such as Kentucky, Montana, and Vermont do not have significant drug

trafficking. Further, DFW and San Diego seem to be the most important cities in Figure

2.5, cities which were found to be important in Table 2.5. Therefore, it seems quite plausible

that cross-sectional dependence in murder is strongly related to marijuana trafficking.

Figure 2.5. Map of Marijuana Trafficking in the U.S. (Reproduced from the 2011 Drug
Threat Assessment)

Other drug-trafficking routes are plotted in Figure 2.6. Panel A shows primary routes

for heroin, which upon careful examination are somewhat different from the factor loadings.

For instance, heroin does not have many primary routes through the U.S. Upland South.

However, the estimated factor loadings are somewhat large in the Upland South, with the

exception of Kentucky. Panel B shows cocaine routes which are strong around Atlanta and

weak around DFW. This pattern is dissimilar to the results from Table 2.5. It must be said

that the factor could potentially be related to some weighted average of particular drugs.
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This possibility cannot be excluded. However, from Figures 2.5 and 2.6, it appears likely that

cross-sectional dependence in murder rates is likely to be caused by marijuana trafficking

specifically.

Panel A: Heroin Trafficking Panel B: Cocaine Trafficking

Figure 2.6. Maps of Drug Trafficking in the U.S. (Reproduced from the 2011 Drug Threat
Assessment)

As explained above, in single-factor panels, the national average is closely related to

the common factor. Therefore, all this evidence shows not only that the common factor

for murder is related to drug-trafficking, but also that movement in the national average is

caused by fluctuation in drug-trafficking. Further it is likely that the most important drug to

murder is marijuana. From all the evidence presented, particularly Figure 2.3, the decline in

the national murder rate during the 1990s was likely caused by declining levels of marijuana

smuggling.

2.5 Conclusion

This paper models crime rates using the common factor structure and provides a simple

explanation for cross-sectional dependence in the murder rate. Other violent and property

crimes can easily be explained by their respective national averages. Variation in the national

averages is left open for debate. On the other hand, homicide and non-negligent manslaugh-

ter are very different. In particular, leadership identification using Parker and Sul (2013)
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indicates that Texas and California are the sources of cross-sectional dependence in murder

rates. These states share large borders with Mexico and are common sources of illegal entry.

This coupled with evidence that city-level murders are extremely correlated indicates that

the cause of cross-sectionally dependent murder is drug-trafficking.

The policy implications of drug-trafficking explaining the common factor are enormous.

17% of the variation in homicide rates is explained by the common factor. However, since the

common factor affects most of the co-movement, back-of-the-envelope calculations reveal that

the common factor accounts for 94.9% of the decline in the national murder rate from 1991

to 2000. Declining murder rates are directly related to declining amounts of drug-trafficking.

Through the 90s, agencies like the DEA and PFM battled drug-trafficking in the U.S. and

in Mexico by making more arrests and by targeting key players in the drug trade. Famous

kingpins such as Pablo Escobar were killed in the 90s by various police forces. The evidence

presented here indicates that drug enforcement agencies were extremely successful during

the 90s. Their efforts caused serious changes in the murder rate in all major cities across the

U.S., even though these changes seemed unrelated at the time. Assuming that drugs remain

generally prohibited in the U.S., further funding of the war on drugs (specifically targeting

drug-trafficking) may help to prevent future murders in the U.S.
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ABSTRACT

This paper details the problems of the Wilcoxon-Mann-Whitney (WMW) rank-sum test for

comparing two independent samples and proposes a new testing procedure for comparing dis-

tributions in laboratory experimental games. The WMW test is commonly misinterpreted as

a test of means, when the test actually distinguishes higher-moment differences as evidenced

by Monte Carlo simulation. As a distribution test, WMW performs quite poorly in terms of

power of the test. Further, because of this poor finite-sample performance, many researchers

use unconventional methods, such as pooling rounds of repeated games which is shown to

be inconsistent. A new testing procedure is developed using the beta distribution which has

better power than WMW. This sequential testing procedure has the added advantage that it

enables researcher to not only show that the distributions are different, but also explain how

the distributions have changed between samples, using the new definition of distributional

shifting. This new procedure is proven consistent theoretically and the finite-sample perfor-

mance is shown to be better through Monte Carlo simulation and application to a canonical

empirical example.
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3.1 Introduction

Comparing two independent samples is straightforward in theory. Many test statistics have

been developed and used in practice. When the sample size is moderately large, a central

limit theorem can be employed to compare the central tendencies of the two samples. Such

procedures do not require normality assumptions and are simple enough to be taught in

undergraduate statistics courses. These results work quite well when the cost of collecting

data is relatively cheap. However, in lab experiments, collecting data is expensive and

collected data is often asymmetrically distributed. Limited budgets lead to small sample

sizes, where parametric form becomes important. Hence, more powerful tests are needed.

Wilcoxon (1945) develops two statistical tests for two-sample comparisons, the rank-sum

test and the signed-rank test. The limiting distribution for the rank-sum test is derived in

Mann and Whitney (1947). This Wilcoxon-Mann-Whitney rank-sum test (hereafter referred

to as WMW) is the most common statistical test used for comparing the distributions of

two independent samples in the experimental literature. Despite its prominence, WMW has

many problems, or pitfalls, which are investigated in Section 2.2 of this paper. First, WMW

has low power – meaning that it struggles to reject false nulls unless the sample size is large.

WMW particularly struggles to detect differences in second or higher moments as seen by

Marsh (2010) and others. Second but related, WMW is commonly misinterpreted. WMW

should only be interpreted as a test of whether or not two samples are drawn from the same

distribution. The null is the same distribution; the alternative is that the distributions are

different. Rejection of the null could result from the distributions having different means,

variances, or other higher moments. However, because Marsh (2010) and others have found

that WMW is poor at detecting higher-than-first moment differences, WMW has commonly

been interpreted as a test of means. The test is treated like a general z-score test, when

reality paints a very different picture. Also, because WMW has low power, many researchers

apply the test in uncommon ways, e.g., pooling many rounds of repeated games before
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testing, which usually results in inconsistent estimation. Altogether, the most important

issue is interpretation. If WMW detects higher moment differences, identifying an economic

meaning for the test becomes challenging. Findings from WMW that one distribution is

somehow “right or left” of another distribution could be quite misleading.

To overcome these issues, this paper provides an alternative statistical procedure for

experimentalists which is robust, simple, less restrictive, and more powerful. For the goal

of detecting whether or not two samples are derived from the same distribution, this paper

contains information about a new distribution test which is quite powerful. However, when

the goal is more general (i.e., to understand how two distributions are different), a new

testing procedure is needed for comparing a few different characteristics of the distributions.

This ‘sequential testing procedure’ consists of the following three steps: The first step is to

pre-test if the distributions are different between samples. WMW can be used for testing the

first null hypothesis, yet because the power of WMW is low, this paper recommends using

the new distribution test. If the first null of equal distributions is rejected, then there is

evidence that the two samples are drawn from different distributions – differences which can

be investigated. The next suggested step in testing for shifting is to test the null hypotheses

that each distribution is symmetric. This constitutes two tests, testing symmetry for each

sample separately. If the distributions are symmetric, then the mean, median, and mode (if

it exists) are all the same. If one distribution is symmetric and the other is not, this implies a

specific change in distribution which can be interpreted depending on the context. Rejection

of the first null but non-rejection of the second null (in both cases) implies that the samples

have heterogeneous means and/or variances. In practice this second step can be omitted

entirely because many distributions are clearly asymmetric. For example, in ultimatum

games, offers are usually right skewed – more offers are in the right tail. Similarly in public

goods games, contributions to the public account are usually right skewed. The third null

hypothesis is designed to test whether or not one distribution “moves” to the left or right
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relative to the other distribution. This notion of movement is defined here as ‘shifting’ – a

change in skewness – and the corresponding null hypothesis is that both distributions have

equal skewness (non-shifting). If the equal distribution null is rejected but the non-shifting

null is not rejected, then the primary difference between the two samples is heterogeneous

variance. When both nulls are rejected, then one distribution has shifted to the left or to

the right of the other distribution.

To perform the sequential tests, estimation is performed using the beta distribution. This

‘quasi’-parametric approach is appropriate for a variety of reasons. First, almost all lab data

are bounded and can be transformed to lie between 0 and 1. For example, in ultimatum and

dictator games, subjects bargain over a fixed pie. If the size of the pie is normalized to 1, then

all of the offers are bounded between 0 and 1. Also, in public goods games, the contributions

to the public account can be normalized to be a percentage of the income or endowment. Of

course there are many distributions which support the domain between 0 and 1 such as the

Kumaraswamy and uniform distributions. However, the beta distribution is most commonly

used in practice. Second, nested within the beta distribution are many other common

statistical distributions such as the chi-squared, uniform, and Kumaraswamy distributions.

Thus, the beta distribution can take a wide variety of density shapes. In this sense, this

is labeled the ‘quasi’-parametric approach. Lastly, the beta distribution is characterized by

only two unknown parameters, namely α and β. Thus, building various testing statistics for

the sequential procedure becomes straightforward. That is, the limiting distributions of all

of the statistics proposed in this paper are based on the limiting distributions of the method

of moments estimator for the two key parameters.

Under the assumption that two samples are generated from two independent beta distri-

butions, three statistics are provided to test the sequential null hypotheses. To be specific,

to pre-test that the distributions are the same, a simple χ2 test is constructed for testing if

the latent parameters from the beta distribution, α and β, are the same. To test the other
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hypotheses, simple z-score tests are constructed for testing the symmetry of each empirical

distribution and the degree of skewness between the two distributions. Later, it is shown

that the sequential beta tests provide powerful tools to compare two random samples in

practice. Note that the independence assumption can be relaxed by constructing a bivariate

beta distribution but at this stage, a general bivariate beta distribution is not available.

If these assumptions are not appropriate, remarks in Section 3.3 detail nonparametric and

paired sample alternatives which can be applied.

The rest of the paper proceeds as follows. The next section details the motivation for this

paper: the problems of WMW and some important empirical examples where the WMW test

is not ideal. In Section 3.3, the new sequential testing procedure is developed theoretically

with detailed explanations on how to apply the method. Section 3.4 studies the finite sample

performance of the various tests to show that the sequential testing procedure is very accurate

in small samples. Returning to the canonical empirical examples, Section 3.5 details how the

sequential testing procedure can be used to better explain the data. Section 3.6 concludes.

3.2 Motivation and a Canonical Empirical Example

This section explores an empirical example where the standard WMW test is not effective.

Then, theoretical criticisms of WMW are developed.

Canonical Empirical Example

The canonical example uses data from Roth, Prasnikar, Okuno-Fujiwara and Zamir (1991

RPOZ hereafter), which is perhaps the most famous and exemplary article from the ulti-

matum game literature. The experiment is a traditional ultimatum game where 2 players

bargain over a fixed pie. First, one player (the proposer) makes an offer (s) to a responder.

The responder observes the offer then chooses whether to accept or reject it. If the respon-

der rejects the offer, both players earn nothing. If the responder accepts, she earns s and
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the proposer earns 1 − s. This game was repeated over 10 rounds. The game was played

in 12 sessions of 10 players each in different countries: Israel, Japan, Yugoslavia, and the

U.S., three sessions per country.1 For each country, the sample sizes, means and standard

deviations for the first round (First), last round (Last), and time series average (TS Avg)

are reported in Table 3.1.

Table 3.1. Sample Statistics for RPOZ (1991)

Country Sample Mean Variance x 102

Size First Last TS Avg First Last TS Avg
Israel 30 0.363 0.331 0.342 2.465 0.846 0.738
Japan 29 0.446 0.402 0.410 4.452 0.518 1.145
Yugoslavia 30 0.442 0.439 0.425 0.738 0.336 0.281
US 27 0.447 0.444 0.430 0.922 0.518 0.303

From Table 3.1, the sample mean offers are smallest in Israel and largest in the US. In

the time series average data, Japan has the largest sample variance and Yugoslavia has the

smallest sample variance. In every round, Yugoslavia and the US seem to have the similar

sample means and variances. The main interest in RPOZ was to compare the offers between

pairs of countries. Due to the serial dependence of the offers over rounds, RPOZ emphasized

that the WMW test should be performed round-by-round, but particularly the last round

sample was used. Meanwhile others typically use the time series averages over rounds (for

example, Ho and Su, 2012).Thus, the results of the WMW tests using two different sampling

data – the last round and TS average samples – are reported in Table 3.2. Note that the

p-values are in parentheses. The first column shows the replication results of RPOZ, which

confirms their conclusion. Yet interestingly, in the TS Avg case, the results are much weaker.

The offers in Israel do not share the same distribution with offers from Japan, Yugoslavia

1RPOZ (1991) has 4 sessions for the US. In the data obtained from RPOZ, two of the US sessions are
found to be exactly the same. Therefore, one sample was dropped from the subsequent analysis. This may
make our results slightly different from an analysis performed with the entire data.
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Table 3.2. Between-Country Comparisons for the WMW and Z-Score Tests (p-value)

Samples WMW Z-Score
Last TS Avg Last TS Avg

Israel v Japan -3.183 (0.001) -2.593 (0.005) -3.315 (0.000) -2.692 (0.004)
Israel v Yugoslavia -4.711 (0.000) -3.823 (0.000) -5.437 (0.000) -4.464 (0.000)

Israel v US -4.578 (0.000) -3.860 (0.000) -5.232 (0.000) -4.625 (0.000)
Japan v Yugoslavia -2.012 (0.022) -0.796 (0.213) -2.150 (0.016) -0.636 (0.262)

Japan v US -2.354 (0.009) -1.246 (0.106) -2.204 (0.014) -0.859 (0.195)
Yugoslavia v US -0.661 (0.254) -0.496 (0.310) -0.323 (0.373) -0.369 (0.356)

and the US, but among these three countries the distributions do not seem to be different

according to the WMW test. Such different results would have a strange interpretation: a

difference in the last round which doesn’t appear ‘overall.’ The correct interpretation is that

WMW cannot distinguish between TS Avg samples from Japan and Yugoslavia or Japan

and the US because WMW lacks power, even though the samples are obviously different.

Notice that the traditional two sample z-score test performs similarly to WMW in all of

these cases. The z-score test is a test for different means. Since the means of offers from

Japan, Yugoslavia, and the US are roughly equal in the TS Avg case, the z-score test is

not expected to reject the null. Many papers have shown that WMW struggles (in terms

of power) to distinguish higher-than-first-moment differences (e.g., differences in variance,

skewness, kurtosis, etc.). Since WMW performs similarly to the z-score test, WMW is

commonly interpreted as a test of means. This paper shows below that this interpretation

is mistaken. Here, in the TS Avg case, offers from Japan have different variance than offers

from Yugoslavia and the US, but WMW and the z-score test both cannot reject their null

hypotheses. There could be differences in skewness as well (even though WMW does not

reject); this possibility is explored below.

Pitfalls of the WMW Test

WMW is used to test if two independent, random samples, x = (x1, . . . , xnx)′ and
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y =
(
y1, . . . , yny

)′
are drawn from the same distribution, i.e.,

H0 : Fx (x) = Fy (x) for all x ∈ R, (3.1)

H1 : Fx (x) 6= Fy (x) for all x ∈ R, (3.2)

where Fx : R → [0, 1] and Fy : R → [0, 1] are cumulative distribution functions (CDFs)

for X and Y respectively. Accordingly, the rejection of this null hypothesis does not imply

that X and Y have different means. However, the converse is true. That is, the rejection

of equal means always implies rejection of the null hypothesis in (3.1) since the cumulative

distribution function must be different if the means are different. Similarly, the rejection of

the equal variances also always implies the rejection of the null in (3.1). Therefore the WMW

test is very conservative in the sense that this test examines whether or not two independent

samples share the same probability distribution.

Monte Carlo studies by Marsh (2010) and Fay and Proschan (2010) showed, that the

WMW test struggles to detect differences in variance even when the sample size n is very

large. Such results lead Fay and Proschan (2010) to conclude that the WMW test is only

useful for detecting mean-differences, which is the equivalent to the standard z-score test. In

practice, many researchers state that they use the WMW statistic to test for equal means.

Thus, statistically, according to Marsh (2010) and Fay and Proschan (2010), the pitfall

of the WMW test is the lack of power with heterogeneous variances. Is it true that the

WMW test does not detect the differences in variance? This paper re-examines this issue by

means of Monte Carlo simulation. In contrast to Marsh (2010), a bounded but asymmetric

distribution is considered as the data generating process. That is, two independent samples

from the beta distributions are generated by,

xi ∼ Beta (αx, βx) , yi ∼ Beta(αy, βy).

For a beta distributed sample with parameters α and β, the mean and variance become

α/ (α + β) and αβ/
[
(α + β)2 (α + β + 1)

]
, respectively. In every case, E (xi) = E (yi) = µ.
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Also note that αk = (1/2) βk, αk = (2/3) βk and αk = βk with µ = 1/3, µ = 0.4 and µ = 0.5

for k = x and y, respectively. When µ moves away from 0.5, the distributions become more

asymmetric. When µ = 0.5, the distribution becomes symmetric. We let αx = 1 but consider

αy ∈ [1, 2, 5, 10] . The number of replications is 10,000.

Table 3.3 reports the results of the Monte Carlo simulations. Evidently when αx = αy

and βx = βy (the same distribution), the null of the same CDF rejects at the nominal size

regardless of the sample size, n. As the variance of yi is getting smaller than that of xi, the

rejection rate increases as n increases. Also as the mean is farther from 0.5 or equivalently,

when the distribution becomes more skewed, the power of the test becomes strengthened.

The symmetric case where µ = 0.5 is first reported where the power of the test becomes

very poor as revealed by Marsh (2010). Even overall, the power of the WMW test in small

samples is generally not overwhelming. Accordingly, in agreement with Marsh (2010) and

Fay and Proschan (2010) but not for the same reason, this paper finds that the WMW test

has low power in the finite sample.

Table 3.3. Impact of Heterogeneous Variances on WMW (Nominal Size = 5%, αx = 1)

µ αy V (y)× 102 n = 25 50 100 250 500
Size 0.5 1 8.33 0.048 0.051 0.051 0.054 0.049

0.4 1 6.86 0.048 0.051 0.051 0.054 0.049
1/3 1 5.56 0.048 0.051 0.051 0.054 0.049

Power 0.5 2 5.00 0.051 0.055 0.054 0.054 0.055
0.5 5 2.27 0.061 0.062 0.063 0.067 0.066
0.5 10 1.19 0.072 0.071 0.073 0.074 0.077
0.4 2 4.00 0.058 0.063 0.071 0.099 0.139
0.4 5 1.78 0.072 0.088 0.113 0.192 0.318
0.4 10 0.92 0.088 0.107 0.137 0.235 0.400
1/3 2 3.18 0.061 0.071 0.092 0.158 0.261
1/3 5 1.39 0.092 0.127 0.193 0.380 0.620
1/3 10 0.72 0.112 0.160 0.244 0.472 0.738

Being overly conservative is not a problem if WMW rejects the null. Yet because of

this lack of power, the test is commonly performed in non-standard ways to find significant
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results. For instance, in many experiments data is pooled over time. Instead of applying the

test to one round of data, researchers stack all the rounds together, which is shown here to

be inappropriate. Looking to assess the validity of a few different procedures, the following

data generating process is developed,

xit = ρxi,t−1 + uit, yjt = ρyj,t−1 + ejt,

where xit is the offer of player i ∈ {1, . . . , n} in round t ∈ {1, . . . , T} and yjt is the offer of

player j ∈ {n+ 1, . . . , 2n} in round t ∈ {1, . . . , T} , so that the data is serially dependent

which is common in repeated experimental data. The variances of uit and ejt are defined as

follows:

uit ∼ N
(
0, 1− ρ2

)
, and ejt ∼ N

(
0, 1− ρ2

)
,

so that the variances of xit and yjt are always equal to unity. The simulations were replicated

10,000 times and the results are shown in Table 3.4. The last round and time series average

cases do not depend upon ρ so it is not included in the tables (every result is the same).

Table 3.4. Impact of Serial Dependence on the WMW Test (Nominal Size: 5%)

T n Last Round TS Avg Pooled Sample
ρ = 0.5 ρ = 0.8 ρ = 0.95

10 25 0.05 0.05 0.22 0.40 0.50
10 50 0.05 0.05 0.21 0.39 0.51
10 100 0.05 0.05 0.21 0.40 0.51
25 25 0.05 0.05 0.24 0.47 0.64
25 50 0.05 0.05 0.23 0.46 0.63
25 100 0.05 0.05 0.23 0.46 0.63

Notice that xit and yjt have the exact same distributions. Therefore, WMW should

accept the null in 5% of the cases (i.e., size < 5%). Using only the first round of data and

taking time series averages are both well-behaved. In contrast, pooling has massive size

distortion, even when the number of rounds is only 10. As the number of rounds increases,
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this size distortion continues to increase to one. Similarly, as the data becomes more serially

correlated (ρ increases), size distortion increases. Laboratory data typically has serious serial

correlation because each player is correlated with their ‘future-selves.’

In summary, the WMW test was designed to test whether or not two independent samples

share the same CDF. The use of dependent samples invites false rejection very often even

when the null is true. Also, the WMW test suffers from lack of power in the finite sample.

In the next section, an alternative testing procedure is proposed, which is more powerful

that the WMW test.

3.3 Alternative Sequential Tests

Experimentalists are interested in testing if the distribution has “moved to the right or left.”

At the present time, this notion of “movement” has not been defined. It could be that

the mean, median, or mode has shifted. The mean can move to the right while the mode

moves to the left. Each of these definitions has its own problems. Someone could also argue

that “movement” is defined by stochastic dominance. However, when the variance of the

distributions has changed, this definition becomes problematic. To identify whether or not

the distribution has moved either to the right or left, the null hypothesis in (3.1) should be

examined first. As discussed before, the WMW test suffers from a serious lack of power in

the finite sample. This section aims to design better tests for which the power of the tests

is much better than that of the WMW test. Throughout the paper, we assume that x and

y are independent, random samples from unknown but bounded distributions.2

Pre-Test for the Equal Distributions The beta distribution has a variety of useful

properties which make it ideal for application to bargaining data. Beta random variables

2Assuming a bounded distribution is reasonable in a laboratory context because subjects are not able to
play outside of a fixed range. For instance, in the canonical example of ultimatum games, the proposed offer
must be between nothing and the whole pie (inclusive).
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are bounded between zero and one. This is appropriate for most laboratory data which has

a bounded structure by experimental construction. This method is called ‘quasi’-parametric

because the beta distribution is quite general. The density can be convex or concave. It can

have a U-shape, L-shape or bell-shape, and the density can be unimodal or bimodal. The

density function is given by,

f (x|α, β) =
1

B (α, β)
xα−1 (1− x)β−1 , for x ∈ [0, 1] , α > 0, β > 0;

where B (α, β) is the beta function. There are many interesting properties of the beta distri-

bution. First mean, variance and skewness can be expressed as functions of α and β. That

is, E (x) = α/ (α + β) , V (x) = αβ
[
(α + β)2 (α + β + 1)

]−1
, the median of x, Med(x) , be-

comes (3α− 1) / (3α + 3β − 2) , and the skewness of x, Skew(x) , becomes 2 (β − α)
√

1 + α + β

×
[√
αβ (2 + α + β)

]−1
. Hence when α = β, the distribution becomes symmetric as we

showed before. When α = β = 1, the distribution becomes uniform. Since all of the mo-

ments can be expressed as function of α and β, the null hypothesis of the equal distributions

becomes equivalent to the null hypothesis of the equal αs and βs. That is,

H1O : Fx = Fy,

H1A : Fx 6= Fy

⇐⇒
H1O : αx = αy & βx = βy

H1A : αx 6= αy or βx 6= βy

(3.3)

To perform the distributional test, the beta parameters must be estimated first. The

method of moments estimator is employed:

α̂x = (x̄)
x̄ (1− x̄)− s2x

s2x
, β̂x = (1− x̄)

x̄ (1− x̄)− s2x
s2x

, (3.4)

where x̄ and s2x are the sample mean and variance of {xi} , respectively. In practice, the

maximum likelihood estimation has not commonly been used for two fundamental problems.

First, the maximum likelihood estimators have no closed form. In general, some maximum

likelihood approximation algorithms commonly fail for the beta distribution due to the pres-

ence of local maxima. This makes the maximum likelihood solution difficult (though not
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impossible) to implement.3 Second, bargaining data typically has many individuals who

play absolute zero or one. Playing absolute zero or one should not be a serious problem

because players may only be playing approximately beta. Nonetheless, any x value of zero

or one makes the likelihood function uniformly zero for all choices of α and β, so maximum

likelihood estimation becomes impossible.

Define the beta distribution test statistic, B, as,

B =
[
α̂x − α̂y, β̂x − β̂y

] (
Ω̂x/nx + Ω̂y/ny

)−1 [
α̂x − α̂y, β̂x − β̂y

]′
,

where Ω̂x is defined in Appendix C. Then by using the delta method, it is straightforward

to show that as nx, ny →∞ the limiting distribution of B becomes the χ2 distribution with

two degrees of freedom. It is important to note that the testing of the null hypothesis, H1O,

becomes a pre-testing for the next two tests which we will discuss shortly. Usually the 20%

significance level is used for pre-testing. In other words, we recommend using 3.22 as the

critical value for the beta distribution statistic B, which is the 20% significance level for the

χ2
2 distribution.

Test for Shifting Distributions When the null of the equal distribution is rejected, the

interesting and important research question becomes how distributions are different from one

another. Note that the null of equal distributions can be rejected when any moments of two

distributions are different. However researchers are usually interested in comparing two em-

pirical distributions, particularly the location of the distributions. When both distributions

are symmetric, the mean, mode and median are all same so a mean comparison is adequate

to find how the location of the two distributions are changing. Meanwhile, when the distri-

butions is asymmetric, the mean, mode, and median are each possibly different from each

other. Of course, when a distribution is not symmetric, the median becomes a better mea-

sure for central tendency but depending on the nature of the experimental game, sometimes

3For details, see Gupta and Nadarajah p. 230.
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the mode of the distribution could be the parameter of interest. But usually, the researcher

does not know which measure they want to use for comparison. In such circumstances, the

following definition may be helpful.

Definition (Shifted) The distribution of Y has shifted to the right of the distribution of

X, if and only if,

Skew (X) > Skew (Y ) .

Skewness delivers information about the shape of this distribution that does not depend on

center or spread. It follows that: it is rather useful to measure how a distribution moves left

or right relative to the other distribution, especially when the distribution is not symmetric.

For example consider the following case where αx = 2, βx = 4, αy = 3, and βy = 6. Then

both samples share the same mean of 0.33 but don’t share either same variance or skewness.

The skewness for {yi} becomes 0.41 but that for {xi} is 0.47. Hence the series {yi} is less

right skewed compared to the series {xi} . According to our new definition, we can say that

the empirical distribution of {yi} shifts to the right of the empirical distribution of {xi} .

Figure 3.1 shows this case explicitly.Notice that the majority of the mass of the distribution

seems to move to the right, but the tail moves left. This is consistent with the new definition

(and the reason for skewness occurring in the opposite direction from shifting). Therefore,

when a test of means cannot reject the null hypothesis, testing for shifting could still produce

statistically significant results. Another example is where αx = 1.5, βx = 3.833, αy = 2, and

βy = 5.333. Here, both samples have the same median of 0.25 but the skewness, mean, and

variance are all different. The skewness for {yi} becomes 0.67, but that for {xi} is 0.63. The

distribution of {yi} shifts to the right of that of {xi} here as well. Figure 3.2 shows this

case. Likewise, both sample can have the same mode when shifting occurs. Consider when

αx = 2, βx = 3, αy = 3, and βy = 4.333. Here, the modes for both distributions are the
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Figure 3.1. Shifting Densities with Equal Means

Figure 3.2. Shifting Densities with Equal Medians
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same, occurring at 0.333, but Skew(X) = 0.286 while Skew(Y ) = 0.306. Figure 3.3 shows

this case explicitly. Notice that in this case, the tail is far more important than than the

highest mass point. Around the highest mass point, both distributions are very similar, so

the tail becomes the only important difference. {yi} has a smaller right tail, so {yi} has

shifted left of the distribution of {xi} (opposite direction of other cases).

Figure 3.3. Shifting Densities with Equal Modes

Similarly, two distributions can have the same variances when shifting occurs. Therefore,

shifting provides new information about how the density changes. This new information is

fundamentally important because of its economic intuition: Suppose there are two groups,

a treatment and a control for ultimatum game offers. As stated above, in ultimatum games,

distributions of offers are typically right skewed. If the empirical distribution from the

treatment group has shifted to the left of that from the control group, then most individuals

in the treatment group are making lower offers, while a small number of treated individuals

are making much larger offers. Thus, shifting compares how treated individuals play relative

to their own group using the control group as a ‘base-line’ for this comparison.
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Note that before estimating the skewness, it is useful to test whether or not either distri-

bution is symmetric. Since both samples are bounded between 0 and 1, the non-rejection of

the null hypothesis of a symmetric distribution implies that the means of both distributions

are the same and become 0.5. Thus, the following null hypothesis of interest becomes,

H2O : fx (cx + x) = fx (cx − x) for some cx ∈ R and all x ∈ R,

m (3.5)

H2O : αx = βx ⇐⇒ H2O : µx = 0.5

The test statistic can then be defined as,

zSym(X) =
√
nx

α̂x − β̂x(
J′Ω̂xJ

)1/2 ,
where J = [1,−1]′. Straightforward application of the delta method to Lemma 3 shows that

this test is consistent as nx → ∞. The result for zSym(Y ) is obviously the same. For testing

the alternate formulation of µx = 0.5, the test statistic becomes,

zoSym(X) =
√
nx

µ̂x − 0.5(
J∗′Ω̂xJ∗

)1/2
where µ̂x = α̂x/

(
α̂x + β̂x

)
and J∗′ =

(
α̂x + β̂x

)−2 [
β̂x,−α̂x

]
. Testing using either method

has three possible outcomes: First, tests for both samples could reject the null. In this

case, both distributions are potentially symmetric and shifting has not conclusively occurred.

Here, testing for shifting separately is redundant and should not be performed. Second, a test

for one sample could reject and the other could accept. In this case, the distribution which

rejects has shifted away from symmetry while the other has not, so shifting has occurred.

Here also, there is no need to test for shifting. Third and finally, both tests can reject. In

this case, shifting must be tested directly.
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To test if shifting has occurred, the following hypotheses are defined.

H3O : Skew (X) = Skew (Y ) , H3A : Skew (X) 6= Skew (Y ) . (3.6)

If the null is rejected, the distributions have shifted. If the null cannot be rejected, then

there is no conclusive evidence of shifting. The following statistic is used to test H3O,

zSkew =
κ̂
(Beta)
3x − κ̂(Beta)

3y(
J′xΩxJx/nx + J′yΩyJy/ny

)1/2 ,
where

Jx =

(
α̂x + β̂x

)√
α̂xβ̂x(

α̂x + β̂x + 2
)2√

α̂x + β̂x + 1

−
(
β̂x + 1

)(
3α̂x + β̂x + 2

)
α̂x

,
(α̂x + 1)

(
α̂x + 3β̂x + 2

)
β̂x

′ .
Straightforward application of the delta method to Lemma 3 shows that this test is consistent

as nx, ny →∞. When the distribution pre-test is combined with the symmetry and skewness

tests, the method is referred to as the ’sequential testing procedure.’

Theorem 1 proves that this method is consistent as nx, ny →∞.

Theorem 1 (Consistency of the Beta Sequential Procedure for Independent Sam-

ples) Given two independent, random samples, x and y, the following cases apply:

(i) Under the null that αx = αy and βx = βy,

lim
nxny→∞

Pr
[
B < F−1

χ2
2

(1− α)
]

= 1− α,

where F−1
χ2
2

(p) is the quantile function of the χ2
2 distribution.

(ii) When FX 6= FY , under the null that αx = βx,

lim
nxny→∞

Pr
[∣∣zSym(X)

∣∣ < F−1Z

(
1− α

2

)]
= 1− α,

where F−1Z (p) is the quantile function of the N (0, 1) distribution.
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(iii) When FX 6= FY and X and Y are not symmetric, under the null that κ∗3x = κ∗3y,

lim
nxny→∞

Pr
[
|zSkew| < F−1Z

(
1− α

2

)]
= 1− α.

The alternatives are obviously consistent as well. See Appendix C for detailed proof.

The following remarks concern sequential testing in greater generality. Sometimes, re-

searchers are interested in evaluating the distributions of paired (or dependent) samples. For

these comparisons, experimentalists have commonly used the Wilcoxon signed-rank test. The

following remark concerns paired samples and the beta testing procedure.

Remark 1 (Beta Sequential Procedure for Dependent Samples) In order to analyze

paired data, (x1, y1) , . . . , (xn, yn) , using the beta approach, a bivariate beta distribution must

be assumed. This distribution is still an active area of research. Some of these distributions

will lend themselves to this estimation better than others. For instance, El-Bassiouny and

Jones (2005) provide a distribution in which many other bivariate beta distributions are

nested, with joint density:

f (x, y) = C
xa/2−1 (1− x)(b+d)/2−1 yb/2−1 (1− y)(a+d)/2−1

(1− xy)(a+b)/2
F

(
a+ b

2
,
d− c

2
;
a+ d

2
;
x (1− y)

1− xy

)
,

where C is a constant defined so that the double integral equals unity and 0 < x, y < 1. The

moments of this distribution involve the generalized hypergeometric function, so the method

of moments estimator will not have a closed-form. Similarly, the five parameter bivariate

beta distribution in Gupta and Wong (1985) has moments which involve the generalized hy-

pergeometric function. Other choices include the three parameter bivariate beta distribution

from Gupta and Wong (1985) with joint density:

f (x, y) =
Γ (a+ b+ c)

Γ (a) Γ (b) Γ (c)
xa−1yb−1 (1− x− y)c−1 ,
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where x + y ≤ 1 and x, y > 0 and where Γ (x) is the gamma function. Because this density

has only three parameters and because the inequality is restrictive, this density is not very

general. Nadarajah and Kotz (2005) define the density

f (x, y) =
xc−1 (y − x)b−1 ya1−c−b (1− y)b1−1

B (a1, b1)B (c, b)

where 0 ≤ x ≤ y ≤ 1. Because of the inequality, this distribution is also quite restrictive. If

a general bivariate beta distribution with closed-form method of moments estimators cannot

be developed, then approximation methods can be used with some existing bivariate beta

distributions.

Remark 1 states that this paper does not provide a beta test for paired samples. Develop-

ment of this test will be straightforward (although potentially tedious) once a bivariate beta

distribution is generally accepted in the statistical literature.

When the beta distribution cannot be assumed (even approximately), nonparametric

statistics may be more appropriate. In order to perform the sequential testing procedure

nonparametrically, the null hypotheses must be somewhat relaxed. The following statistics

assume independent samples. Consider the following alternative to the distribution statistic

outlined above,

χ2
Nonp =

[
x̄− ȳ, s2x − s2y

] (
Ξ̂x/nx + Ξ̂y/ny

)−1 [
x̄− ȳ, s2x − s2y

]′
,

where,

Ξx =

 µ̄2x µ̄3x

µ̄3x µ̄4x − µ̄2
2x

 ,
and µ̄jx refers to the jth central moment of X. Under the null that X and Y have the same

mean and variance, χ2
Nonp

d→ χ2
2. For the second test, symmetry is a stronger condition than

is needed in practice. As shown in MacGillivray (1981), for many distributions (Pearson

family), zero skewness implies that the mean, median, and mode (if it exists) all occur at
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the same point. If these measures of central-tendency are all the same, then testing any

one of them will be equivalent to testing them all. Furthermore, if X has positive skewness,

then Mode(X) < Median(X) < E(X) and vice versa for negative skewness. These facts

establish that testing if Skew(X) = 0 is sufficient for the purposes of this test. The skewness

coefficient and its estimator are defined by,

κ3x =
µ̄3x

σ3
x

, κ̂3x =
n
√
n− 1

n− 2

∑n
i=1 (xi − x̄)3[∑n

i=1 (xi − x̄)2
]3/2 .

The test statistic for zero skewness is defined by,

z∗Sym(X) =
√
nx

κ̂3x

ω̂
1/2
x

.

where ωx is defined in Appendix C. Under the null that X has zero skewness, zSym(X)
d→

N (0, 1) . Because the samples are assumed to be independent, the skewness test statistic is

simply defined by,

z∗Skew =
κ̂3x − κ̂3y

(ω̂x/nx + ω̂y/ny)
1/2
.

Under the null that no shifting has occurred, z∗Skew
d→ N (0, 1) .

Remark 2 (Nonparametric Sequential Procedure) Given two independent, random

samples, x and y, the following cases apply:

(i) Under the null that E[X] = E[Y ] and Var[X] = Var[Y ] ,

lim
nxny→∞

Pr
[
χ2
Nonp > F−1

χ2
2

(1− α)
]
< α,

where F−1
χ2
2

(p) is the quantile function of the χ2
2 distribution.

(ii) When E[X] 6= E[Y ] or Var[X] 6= Var[Y ] , under the null that X has zero skewness,

lim
nxny→∞

Pr
[∣∣z∗Sym(X)

∣∣ > F−1Z

(
1− α

2

)]
< α,

where F−1Z (p) is the quantile function of the N (0, 1) distribution.
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(iii) When E[X] 6= E[Y ] or Var[X] 6= Var[Y ] , and when X and Y have non-zero skewness,

under the null that Skew(X) = Skew(Y ) ,

lim
nxny→∞

Pr
[
|z∗Skew| > F−1Z

(
1− α

2

)]
< α.

Remark 2 proves that the nonparametric sequential testing method is consistent as nx, ny →

∞. Remark 2 follows as an indirect consequence of Lemmas 4 and 5, which must are eas-

ily adjusted to account for the independence assumptions. The alternatives are obviously

consistent as well.

For the nonparametric sequential procedure, paired samples are allowed by using,

χ2
Pair = n

[
x̄− ȳ, s2x − s2y

]
Ξ̂−1

[
x̄− ȳ, s2x − s2y

]′
,

where Ξ is stated in Appendix C. Testing zero skewness is the same as the nonparametric

independent sample case. The test statistic for equal skewness must be adjusted by an ωxy

term (defined in Appendix C) so that z∗∗Skew becomes,

z∗∗Skew =
√
n

κ̂3x − κ̂3y
(ω̂x + ω̂y − 2ω̂xy)

1/2

Remark 3 (Nonparametric Paired-Sample Sequential Procedure) Given a paired

(potentially-dependent) sample, (x1, y1) , . . . , (xn, yn) , the following cases apply:

(i) Under the null that E[X] = E[Y ] and Var[X] = Var[Y ] ,

lim
nxny→∞

Pr
[
χ2
Pair > F−1

χ2
2

(1− α)
]
< α,

where F−1
χ2
2

(p) is the quantile function of the χ2
2 distribution.

(ii) When E[X] 6= E[Y ] or Var[X] 6= Var[Y ] , under the null that X has zero skewness,

lim
nxny→∞

Pr
[∣∣z∗Sym(X)

∣∣ > F−1Z

(
1− α

2

)]
< α,

where F−1Z (p) is the quantile function of the N (0, 1) distribution.
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(iii) When E[X] 6= E[Y ] or Var[X] 6= Var[Y ] , and when X and Y have non-zero skewness,

under the null that Skew(X) = Skew(Y ) ,

lim
nxny→∞

Pr
[
|z∗∗Skew| > F−1Z

(
1− α

2

)]
< α.

Remark 3 states that the nonparametric paired-sample sequential procedure is consistent as

n→∞. The paired-sample case is a direct consequence of Lemmas 4 and 5 in Appendix C.

3.4 Monte Carlo Simulation Results

This section details the finite sample performance of the WMW test and sequential testing

procedure. First, the independent sample tests are found to all have the correct size (prob.

of rejecting a true null). Second, the power of the independent sample tests are investigated.

The newly developed tests are found to have excellent power in the finite sample. Lastly,

the two symmetry tests are compared. The tests are performed at the 5% nominal level, so

the tests would ideally reject a true null once per twenty replications, on average. In each

case, 10,000 replications are used.4

For all the following simulations, the data generating process (DGP) is given by,

xi ∼ Beta (αx, βx) , yi ∼ Beta(αy, βy).

Under the null of the same distribution in (3.3), αx = αy and βx = βy.Under the null

of the same skewness in (3.6), Skew(X) = Skew(Y ) . In both processes, the samples are

independent, identically distributed, and they are independent of one another. In practice,

the sample size for each of the two samples could be different. For simplicity, the sample

size for both samples will be fixed to one number, n. Various cases are considered but here

only the following four cases are reported to save space.

4The tests described in Remarks 1-3 are similarly analyzed in the online appendix provided on the author’s
website. Stata code for the testing procedure is also provided with the same input format as the WMW test
for convenience.
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Table 3.5. Data Generating Processes for Monte Carlo Simulations

DGP1 DGP2 DGP3 DGP4
x y x y x y x y

α 35.81 35.81 9 3 6 3 3 6
β 47.50 47.50 3 1.35 2 1 3 5

Mean 0.43 0.43 0.75 0.69 3/4 3/4 1/2 6/11
Variance 0.052 0.052 0.122 0.202 0.142 0.192 0.192 0.142

Skewness 0.06 0.06 -0.60 -0.60 -0.69 -0.86 0 -0.10

DGP 1 is used to demonstrate the size of the distribution test; the distribution is con-

structed to resemble the US TS average sample from RPOZ. In DGP 2, the two distributions

are different, yet both have equal skewness. Hence when the distribution test is used on DGP

2, it demonstrates the power of the test, but when skewness is tested, DGP 2 is used to show

the size. DGP 3 shows the power of the test when the samples have equal means although

the variances and skewness are different. DGP 4 is used to demonstrate the power of the

test when one distribution is symmetric.

Table 3.6. Rejection Rates of the WMW and Beta Distribution Tests (Nominal: 5%)

Test DGP 1 (Size) DGP 2 (Power)
n = 25 50 100 250 n = 25 50 100 250

WMW 0.05 0.05 0.05 0.05 0.14 0.23 0.41 0.77
Beta Distribution Test 0.02 0.04 0.04 0.04 0.35 0.87 1.00 1.00

Table 3.6 reports the probability of rejecting the null of the equal distributions. With

DGP 1, where the distributions of the two samples are the same, the WMW test provides

very accurate the size of the test, while the beta distribution test is mildly conservative when

n is small. In terms of power of the tests demonstrated using DGP 2, the beta distribution

test significantly dominates WMW, rejecting perfectly when n is greater than 100.

Table 3.7 reports the probability of rejecting the null for the two symmetry tests described

in (3.5) (α = β and µ = 0.5) under DGP 4. DGP 4 is chosen so that the symmetry test

does not perform perfectly, so comparisons can be made. Observing the x sample, where
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Table 3.7. Rejection Rates for Two Symmetry Tests in DGP 4 (Nominal Size: 5%)

H2O : αx = βx H2O : µx = 0.5
n 25 50 100 250 25 50 100 250

Size 0.03 0.04 0.04 0.04 0.07 0.05 0.05 0.05
Power 0.31 0.58 0.87 1.00 0.45 0.65 0.89 1.00

the null is true, the αx = βx test is rather conservative, rejecting in less than 5% of cases.

The µx = 0.5 has slight oversize distortion when n is quite small, yet this distortion vanishes

quickly as n increases. In terms of power, the µ = 0.5 test uniformly dominates the α = β

test. Therefore, since the µ = 0.5 test shows little size distortion and beats the α = β test

in terms of power, the µ = 0.5 test is recommended. This test was used in the following

simulation and example.

Table 3.8. Rejection Rate for Sequential Skewness Test (Nominal Size: 5% for the Skewness
Test, 20% for the distribution test)

Test DGP 1 & 3 DGP 2 & 4
n = 25 50 100 250 n = 25 50 100 250

Size (DGP 1&2) 0.04 0.05 0.05 0.05 0.06 0.05 0.05 0.05
Power (DGP 3&4) 0.12 0.21 0.37 0.74 0.30 0.56 0.86 0.97

Table 3.8 shows the size and power of the sequential testing procedure for testing the null

of equal skewness. Here, the distribution pre-test is performed at the 20% level, while the

other tests are performed at the 5% level. In terms of size, the sequential testing procedure

is quite accurate even when n is small. Also, the skewness test is quite powerful. Although

results for WMW are not shown alongside the skewness tests (since they test different null

hypotheses), the sequential testing procedure dominates such methods uniformly.
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3.5 Return to the Empirical Example

The importance of the sequential testing procedure is illustrated through application to the

canonical empirical example. RPOZ studies whether there are differences in ultimatum game

offers between Israel, Japan, Yugoslavia and the US. Using WMW and the z-score test on

TS average data, offers from Israel are found to be different than the others, but differences

could not be detected between Japan and Yugoslavia and Japan and the US, even though

the variances are radically different. Table 3.9 reports p-values from the beta sequential

testing procedure. Interestingly, all distributions are found to be different using the beta

sequential method, except for the US and Yugoslavia (which is consistent with results from

other, round samples using this test as well as others) either with TS average or with the last

round sample. Furthermore, the sequential procedure provides information about shifting

behavior. Note that all beta-skewness test statistics are significantly greater than zero except

for the pair of Yugoslavia and the US. This implies that the offers from the US has shifted

right from those from Japan and Israel, and the offers from Japan has shifted right from

that from Israel also. Results regarding Yugoslavia are similar to those from the US.

Table 3.9. Sequential Testing p-Values for Between Country Comparisons

Samples TS Average Last Round
(x v y) WMW Beta Sequential WMW Beta Sequential

Distn̄ Skew Distn̄ Skew
Israel v Japan 0.005 0.043 0.055 0.001 0.011 0.000
Israel v Yugo 0.000 0.002 0.000 0.000 0.001 0.000
Israel v US 0.000 0.002 0.000 0.000 0.001 0.000

Japan v Yugo 0.213 0.013 0.013 0.022 0.074 0.008
Japan v US 0.106 0.023 0.011 0.009 0.118 0.027
Yugo v US 0.310 0.916 n.a. 0.254 0.527 n.a

Figure 3.4 shows the estimated densities for US and Yugoslavia offers. As shown in

Table 3.9, the estimated two distributions are almost identical each other. The estimated
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parameters for the US are α̂US = 35.8058 and β̂US = 47.4994; for Yugoslavia, α̂Yugo = 37.9801

and β̂Yugo = 51.4831. Notice that, as expected, the estimated densities for the US and

Yugoslavia offers are almost exactly the same. This is consistent with the estimated means

and variances above. Indeed, from the beta sequential test, offers from the US and Yugoslavia

are drawn from the same distribution. The mode of Yugoslavian offers is slightly lower than

that of the US offers graphically, but the difference is not statistically significant.

Figure 3.4. Estimated Densities For the US and Yugoslavia Data (TS Average)

Figure 3.5 shows the estimated densities from the US, Israel, and Japan. The shifting

results are clearly visible. The Japan density has shifted to the right of that from Israel,

and the US density right of those from Japan and Israel. The estimated parameters for the

Israel sample are α̂Isr = 10.3546 and β̂Isr = 19.9160; those from Japan are α̂Japan = 8.5263

and β̂Japan = 12.2469. The low variance of the US is clearly visible.
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Figure 3.5. Estimated Densities Between Countries (TS Average)

3.6 Conclusion

This paper pointed out some statistical issues of the WMW test, which has been popularly

used for the comparison of a pair of samples. First, even though WMW was designed for

the comparison of two random distributions, it has been misinterpreted as a test of means

or central-tendency, partly because WMW struggles to distinguish differences in variance.

Second, WMW has low power. Third, because WMW has low power, some experimentalists

have pooled their repeated data together, which causes inconsistency. Fourth, and most

importantly, even when WMW rejects the null of the same distribution, WMW does not

explain how the distributions are different.

This paper explains these criticisms and provides new tests. The first test is a general

way to compare distributions. The paper also provides a test of skewness which may be more

appropriate for deciding if a distribution has “shifted to the right or left.” The skewness test

should be performed as a part of the ‘sequential testing method’ for correct interpretation.
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These tests are performed ‘quasi’-parametrically using the very general beta distribution.

The tests are proven to work in the large sample theoretically. The finite sample performance

of the tests are analyzed by means of Monte Carlo simulations and through application to

three relevant empirical examples. The new testing procedure dominates WMW in terms of

power.
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APPENDIX A

PROOFS FOR CHAPTER 1

Proof of Lemma 1 (Asymptotic Factor Number for Weak Factors) The only

requirement is to show that the difference in residual sum of squares between using no

factors and using k factors is small as N, T →∞. i.e.,

V (0)− V (k) = Op

(
C−2NT

)
, (A.1)

for the following reason. The criterion function, ICp, is defined by: ICp (k) = ln [V (k)] +

kpN,T , where pN,T → 0 and C2
NTpN,T →∞ as N, T →∞. Hence,

ICp (0)− ICp (k) = ln

[
V (0)

V (k)

]
− kpN,T .

From Bai and Ng (2002), V (0) − V (k) = Op

(
C−2NT

)
implies ln [V (0) /V (k)] = Op

(
C−2NT

)
whereas the penalty goes to infinity when multiplied by C2

NT . Therefore, as N, T → ∞,

the penalty dominates ln [V (0) /V (k)] no matter which k > 0 is chosen. Hence, it is only

necessary to show (A.1).

The eigenvalues of a rank k matrix A are denoted as %1 (A) , . . . , %k (A) , ordered from

largest to smallest. Proceed by expressing the difference in eigenvalue form,

V (0)− V (k) =
N∑
l=1

ρl

(
x′x

NT

)
−

N∑
l=k+1

ρl

(
x′x

NT

)
(A.2)

=
k∑
l=1

ρl

(
x′x

NT

)
≤ kρ1

(
x′x

NT

)
.

Now use the model of xit to show,

ρ1

(
x′x

NT

)
= ρ1

(
(ΨZ ′ + xo′) (ZΨ′ + xo)

NT

)
= ρ1

(
ΨZ ′ZΨ′

NT
+

ΨZ ′xo + xo′ZΨ′

NT
+
xo′xo

NT

)
.

91
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From the Hermitian matrix eigenvalue inequality,

ρ1

(
x′x

NT

)
≤ ρ1

(
ΨZ ′ZΨ′

NT

)
+ ρ1

(
ΨZ ′xo + xo′ZΨ′

NT

)
+ ρ1

(
xo′xo

NT

)
(A.3)

= I + II + III.

Note that III = ρ1 (xo′xo/NT ) follows Op

(
C−2NT

)
from the regularity conditions described

above.

To bound the II term, re-express the quantity using the L2-norm1:

ρ1

(
ΨZ ′xo + xo′ZΨ′

NT

)
=

∥∥∥∥ΨZ ′xo + xo′ZΨ′

NT

∥∥∥∥
2

.

Next the triangle inequality can be applied:

ρ1

(
ΨZ ′xo + xo′ZΨ′

NT

)
≤
∥∥∥∥ΨZ ′xo

NT

∥∥∥∥
2

+

∥∥∥∥xo′ZΨ′

NT

∥∥∥∥
2

.

First consider: ∥∥∥∥ΨZ ′xo

NT

∥∥∥∥
2

=
√
ρ1
(
(NT )−2 xo′ZΨ′ΨZ ′xo

)
.

Then,

ρ1
(
(NT )−2 xo′ZΨ′ΨZ ′xo

)
≤ tr

[
(NT )−2 xo′ZΨ′ΨZ ′xo

]
= tr

[
N−1T−2xo′Z

(
1

N

T∑
i=1

ψiψ
′
i

)
Z ′xo

]

Without loss of generality, assume that the loadings follow ψi = Op

(
C−1NT

)
.2 Hence,

ρ1
(
(NT )−2 xo′ZΨ′ΨZ ′xo

)
= Op

(
C−2NT

)
tr
[
N−1T−2xo′ZZ ′xo

]
= Op

(
1

TC2
NT

)
1

N

N∑
i=1

∥∥∥∥∥ 1√
T

T∑
t=1

Ztx
o
it

∥∥∥∥∥
2

2

,

1In Bai and Ng (2002), the commonly used norm is the Frobenius norm, ‖A‖F = tr[A′A]
1/2

. In our

proof, we use the L2-norm, ‖A‖2 = ρ1 (A′A)
1/2

. For any matrix A, ‖A‖2 ≤ ‖A‖F with equality if and only
if rank(A) = 1. Hence, for any vector, ‖A‖2 = ‖A‖F . We occasionally state a Bai and Ng (2002) assumption
in terms of the L2-norm, which is valid because of this equality for vectors.

2We know that ψ′iZt = Op

(
C−1NT

)
so we can always rewrite ψ′iZt = ψ′iIrZt = ψ′iA

′A−1′Zt so that

‖Aψi‖2 = Op

(
C−1NT

)
and

∥∥A−1′Zt

∥∥
2

= Op (1).
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so that, ∥∥∥∥ΨZ ′xo

NT

∥∥∥∥
2

= Op

(
1

T 1/2CNT

)√√√√ 1

N

N∑
i=1

∥∥∥∥∥ 1

T

T∑
t=1

Ztxoit

∥∥∥∥∥
2

2

.

This is straightforward to bound because Bai and Ng (2002) makes the following exogeneity

assumption regarding the factors and errors:

E

 1

N

N∑
i=1

∥∥∥∥∥ 1

T

T∑
t=1

Ztx
o
it

∥∥∥∥∥
2

2

 ≤M.

Therefore,
∥∥(NT )−1 ΨZ ′xo

∥∥
2

= Op

(
T−1/2 × C−1NT

)
= Op

(
C−2NT

)
.
∥∥(NT )−1 xo′ZΨ′

∥∥
2

can be

similarly bounded. Hence, II = Op

(
C−2NT

)
.

Now, it is enough to show that I = Op

(
C−2NT

)
. If ψ′iZt = Op

(
C−1NT

)
, we can assume with-

out loss of generality that Zt = Op

(
C−1NT

)
while ψi = Op (1). From here, it is straightforward

to bound I :

ρ1

(
ΨZ ′ZΨ′

NT

)
= ρ1

(
1

N
Ψ

(
1

T

T∑
t=1

ZtZ
′
t

)
Ψ′

)

= ρ1

(
Op

(
C−2NT

) ΨΨ′

N

)
= Op

(
C−2NT

)
ρ1

(
ΨΨ′

N

)
,

and the loadings can be bounded by,

ρ1

(
ΨΨ′

N

)
≤ tr

[
ΨΨ′

N

]
=

1

N

N∑
i=1

ψ′iψi =
1

N

N∑
i=1

‖ψi‖22 .

Since the loadings are absolutely bounded (maxi ‖ψi‖2 = ψ̄),

ρ1

(
ΨΨ′

N

)
≤ 1

N

N∑
i=1

ψ̄2 = ψ̄2,

and because any bounded variable is Op (1),

ρ1

(
ΨZ ′ZΨ′

NT

)
= Op

(
C−2NT

)
ρ1

(
ΨΨ′

N

)
= Op

(
C−2NT

)
.

Therefore, from (A.2) and (A.3), (A.1) is clear, and the lemma is proved.�
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Proof of Theorem 1.1 (Identification of Estimated Factors: Known Potential

Leaders): Begin under the conditions for (i). Pjt must be correlated with at least one of

the latent factors, Fst. It is only necessary to show that ŷosj,it has a weak factor structure.

Express ŷosj,it as

ŷosj,it = yit − β̂s,jiPjt − λ̂′i,−sF̂−s,t = λ′iFt − β̂s,jiPjt − λ̂′i,−sF̂−s,t + yosj,it.

If Pjt is a leader, then there exists a rotation of the latent factors, H∗, which aligns
[
Pjt, F̂

′
−s,t

]′
with the latent factors,

H∗ = (F ′F )
−1
F ′
[
Pj, F̂−s

]
,

There is a ‘better’ rotation (in terms of minimizing the sum of squared residuals), but ŷosj,it has

a weak factor structure using only the ‘poor’ rotation H∗, as is shown here. ‖H∗‖2 = Op (1)

and ‖H∗−1‖2 = Op (1) follows from Stock and Watson (1998) and Bai and Ng (2002). Thus,

ŷosj,it = λ′iFt −
[
β̂s,ji, λ̂

′
i,−s

]([
Pjt, F̂

′
−s,t

]′
−H∗′Ft

)
−
[
β̂s,ji, λ̂

′
i,−s

]
H∗′Ft + yosj,it

=
(
λ′iH

∗−1′ −
[
β̂s,ji, λ̂

′
i,−s

])
H∗′Ft −

[
β̂s,ji, λ̂

′
i,−s

]([
Gt, F̂

′
−s,t

]′
−H∗′Ft

)
+ yosj,it

Using the proper alignment H∗,∥∥∥∥[Pjt, F̂ ′−s,t]′ −H∗′Ft∥∥∥∥
2

= Op

(
N−1/2

)
follows from Bai and Ng (2003). Since, the factor is accurately estimated,∥∥∥λ′iH∗−1′ − [β̂s,ji, λ̂′i,−s]∥∥∥

2
= Op

(
T−1/2

)
,

follows from a simple least-squares analysis. Recognizing that
∥∥∥[β̂s,ji, λ̂′i,−s]∥∥∥

2
= Op (1)

and ‖H∗′Ft‖2 = Op (1) , it is evident that ŷosj,it has a weak factor structure. Therefore,

#̂
(
ŷosj,it

)
→ 0 as N, T →∞. Under the conditions for (ii), it is clear that the factors in ŷosj,it

do not vanish as N, T →∞ (the proof is straightforward).�
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APPENDIX B

TECHNICAL APPENDIX FOR CHAPTER 2

Common factor identification in this paper is much easier than in Parker and Sul (2013)

because this is the single factor case. Consider the following single factor model defined

in (2.1) where Ft is a univariate time series of latent factors observed at time t, λi is a

collection of loadings to the latent factor for the ith individual, and yoit is the idiosyncratic

error. Assume, without loss of generality, that yit and Ft have been standardized.1 F̂t is the

principal component estimator of Ft. Note that F̂t may be different from Ft in sign. # (yit)

is the true number of common factors of yit and #̂ (yit) is the estimated number of common

factors of yit. Factor number estimation is defined explicitly in Bai and Ng (2002).

Assuming that Ft is observed, consider performing a seemingly unrelated regression of

yit on Ft, that is regress each individual time series in the panel, yi· = (yi1, . . . , yiT ) , on the

latent factor time series, F = (F1, . . . , FT ). The residuals become:

ŷoit = yit − λ̂iFt = yoit + (λi − λ̂i)Ft = yoit +Op

(
T−1/2

)
.

Note that while ŷoit may have a common factor in the finite sample, as N, T → ∞ any

common factors in ŷoit must vanish because yoit has no common factors.

The natural question follows: Does factor number estimation detect those factors which

asymptotically vanish? In order to answer this question, Parker and Sul (2013) defines

the asymptotically weak factor as a factor structure which vanishes at the rate C−1NT where

CNT = min
{
N1/2, T 1/2

}
. This is formally expressed as the factor model: xit = ψ′iZt + xoit

1Since there is only one factor, the empirical true factors and statistical true factors defined in Parker
and Sul (2013) coincide. Since this is the single factor case, there is no reason for these definitions here, so
the true factor is simply referred to as the latent factor.
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where ψ′iZt = Op

(
C−1NT

)
. Lemma 1 in Parker and Sul (2013) shows that as N, T → ∞

jointly, #̂ (xit)→p 0. Therefore, as N, T →∞ jointly, #̂ (ŷoit)→p 0.

Alternatively, consider regressing the panel on some other time series, Lt = δFt + υt

where υt = op (1):

yit = γiLt + uit.

Now, the residual becomes

ûit = yit − γ̂iLt = uit + (γi − γ̂i)Lt.

However, because γ̂i is inconsistent, γ̂i− γi = op (1) and ûit has a significant common factor.

Hence is easy to show that as N, T →∞ jointly, Pr
[
#̂ (ûit) = 0

]
= 0.

For more information on common factor identification, including identification in the r

factor case, see Parker and Sul (2013).



www.manaraa.com

APPENDIX C

LEMMAS AND PROOFS FOR CHAPTER 3

Define µk as the non-central moments of beta random variable x, which is given by

µk = E
[
xk
]

=
k−1∏
i=0

αx + i

αx + βx + i
.

Next, define

Ωx = JoΩo
xJ

o′,

where

Jo =

 (µ2 − µ2
1)
−1

0 − (µ2 − µ2
1)
−2
µ1 (µ1 − µ2)

0 (µ2 − µ2
1)
−1 − (µ2 − µ2

1)
−2

(1− µ1) (µ1 − µ2)

 ,
and

Ωo
x =


σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 ,
with

σ11 = τ4 + 4 (µ2 − µ3)µ
2
1 − 4µ1µ

2
2,

σ12 = τ1 − τ4 − τ2 + 6µ2
1µ3 + (1 + 2µ2)µ1µ2 − µ2

2,

σ13 = −τ1 − 2τ3 − 2 (1 + 2µ1)µ
2
1µ2 + 2µ1µ3,

σ22 = 2τ1 + τ4 + 2τ2 − (1 + 4µ2)µ
2
1 + (1 + µ2)µ2 − 2µ3 + µ4,

σ23 = τ1 + 2τ3 + 2 (1 + 2µ2)µ
3
1 + (3µ2 − 5µ1)µ2 + µ3 − µ4,

σ33 = 4
(
3µ2 − µ2

1

)
µ2
1 − 4µ1µ3 − 5µ2

2 + µ4,
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where τ1 = µ1µ4 + µ2µ3 − 2µ3µ
2
1, τ2 = 3µ1µ3 + 2µ3

1 − µ1µ2, τ3 = 3µ2
1µ2 − 3µ1µ

2
2 − 2µ4

1,

τ4 = µ3
2−4µ4

1 −4µ2
1µ

2
2 +8µ3

1µ2 +µ2
1µ4 +2µ1µ2µ3. Ωy is similarly defined as Ωx so the formula

for Ωy is omitted to save space.

For Lemma 1, we further define ns = n− s, e.g., n1 = n− 1, and x̄k = (n−1
∑n

i=1 xi)
k
.

Lemma 1 (Expected Values of Beta Family Sample Moments) If x1, . . . , xn are

drawn from a random sample beta distribution, then the expectations of the following powers

are:

E [x̄] = µ1

nE
[
x̄2
]

= n1µ
2
1 + µ2

n2E
[
x̄3
]

= n1n2µ
3
1 + 3n1µ1µ2 + µ3

n3E
[
x̄4
]

= n1n2n3µ
4
1 + 6n1n2µ

2
1µ2 + n1

(
3µ2

2 + 4µ1µ3

)
+ µ4

E
[(
s2x + x̄2

)]
= µ2

nE
[
x̄
(
s2x + x̄2

)]
= n1µ1µ2 + µ3

n2E
[
x̄2
(
s2x + x̄2

)]
= n1n2µ

2
1µ2 + n1

(
2µ1µ3 + µ2

2

)
+ µ4

n3E
[
x̄3
(
s2x + x̄2

)]
= n1n2n3µ

3
1µ2 + 3n1n2

(
µ2
1µ3 + µ1µ

2
2

)
+ n1 (4µ2µ3 + 3µ1µ4) + µ5

nE
[(
s2x + x̄2

)2]
= n1µ

2
2 + µ4

n2E
[
x̄
(
s2x + x̄2

)2]
= n1n2µ1µ

2
2 + n1 (µ1µ4 + 2µ2µ3) + µ5

n3E
[
x̄2
(
s2x + x̄2

)2]
= n1n2

[
µ2
1

(
n3µ

2
2 + µ4

)
+ µ2

(
µ2
2 + 4µ1µ3

)]
+ n1

(
3µ2µ4 + 2µ2

3 + 2µ1µ5

)
+ µ6

The proofs of Lemma 1 are straightforward hence omitted.

Lemma 2 (Limiting Distribution of Method of Moments Components) If x1, . . . , xn

are drawn from a random sample beta distribution, then

√
n

([
θ̂1, θ̂2, θ̂3

]′
− [θ1, θ2, θ3]

′
)

d−→ N
(
[0, 0, 0]′ ,Ωo

x

)
.
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where

θ1 = µ1 (µ1 − µ2) , θ2 = (1− µ1) (µ1 − µ2) , θ3 = µ2 − µ2
1,

and

θ̂1 = (x̄)
(
x̄ (1− x̄)− s2x

)
, θ̂2 = (1− x̄)

(
x̄ (1− x̄)− s2x

)
, θ̂3 = s2x.

Proof of Lemma 2

By using Lemma 1, it is straightforward to show that:

E
[
θ̂1

]
=

n1

n

(
µ2
1 − µ1µ2

)
+

1

n
(µ2 − µ3) ,

E
[
θ̂2

]
= (µ1 − µ2) +

n1

n

(
µ1µ2 − µ2

1

)
+

1

n
(µ3 − µ2) ,

E
[
θ̂3

]
=

(n+ 1)

n
µ2 −

n1

n
µ2
1,

and

nVar
[
θ̂1

]
= µ3

2 − 4µ4
1 − 4µ2

1µ
2
2 − 4µ1µ

2
2 + 4µ2

1µ2 − 4µ2
1µ3 + 8µ3

1µ2

+µ2
1µ4 + 2µ1µ2µ3 +O

(
n−1
)
,

nVar
[
θ̂2

]
= µ2 − 2µ3 + µ4 − µ2

1 + 4µ3
1 + µ2

2 − 4µ4
1 + µ3

2 − 4µ2
1µ

2
2

−2µ1µ2 + 6µ1µ3 − 2µ1µ4 − 2µ2µ3 − 4µ2
1µ2 − 4µ2

1µ3

+8µ3
1µ2 + µ2

1µ4 + 2µ1µ2µ3 +O
(
n−1
)
,

nVar
[
θ̂3

]
= −4µ4

1 + 12µ2
1µ2 − 4µ3µ1 − 5µ2

2 + µ4 +O
(
n−1
)
,

nCov
[
θ̂1, θ̂2

]
= 4µ4

1 − µ2
2 − 2µ3

1 − µ3
2 + 4µ2

1µ
2
2 + 2µ1µ2 − 3µ1µ3 + µ1µ4

+µ2µ3 + 2µ1µ
2
2 + 4µ2

1µ3 − 8µ3
1µ2 − µ2

1µ4 − 2µ1µ2µ3

+O
(
n−1
)
,
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nCov
[
θ̂1, θ̂3

]
= 4µ4

1 + 2µ1µ3 − µ1µ4 − µ2µ3 + 6µ1µ
2
2 − 8µ2

1µ2 + 2µ2
1µ3

−4µ3
1µ2 +O

(
n−1
)
,

nCov
[
θ̂2, θ̂3

]
= −4µ4

1 + 4µ3
1µ2 + 2µ3

1 + 6µ2
1µ2 − 2µ3µ

2
1 − 6µ1µ

2
2 − 5µ1µ2

+µ4µ1 + 3µ2
2 + µ3µ2 + µ3 − µ4 +O

(
n−2
)
.

Multiplying by n and taking the limit as n → ∞ yields the variance-covariance matrix

expressed above. By taking transformations, we can apply the Lindeberg-Levy central limit

theorem and the statement is proved.�

Lemma 3 (Limiting Distribution of the Method of Moments Estimator) If x1, . . . , xn

are drawn from a random sample beta distribution with parameters αx and βx, then

√
n

([
α̂x, β̂x

]′
− [αx, βx]

′
)

d−→ N
(
[0, 0]′ ,Ωx

)
.

Proof of Lemma 3

Let g1, g2 : R3 → R be defined by:

g1 (θ1, θ2, θ3) =
θ1
θ3
, g2 (θ1, θ2, θ3) =

θ2
θ3
.

Differentiating, we find that:

∂g1 (θ1, θ2, θ3)

∂x
=

1

θ3
,
∂g1 (θ1, θ2, θ3)

∂y
= 0,

∂g1 (θ1, θ2, θ3)

∂θ3
= −θ1

θ23
,

∂g2 (x, y, z)

∂x
= 0,

∂g2 (x, y, z)

∂y
=

1

θ3
,
∂g2 (x, y, z)

∂z
= −θ2

θ23
.

The Jacobian, Jox, consists of the above partial derivatives evaluated at the following values:

θ1 = lim
n→∞

E
[
m2

1 −m1m2

]
= µ1 (µ1 − µ2) ,

θ2 = lim
n→∞

E [m1 (1−m1)− (1−m1)m2] = (1− µ1) (µ1 − µ2) ,

θ3 = lim
n→∞

E
[
m2 −m2

1

]
= µ2 − µ2

1.

From here, we can use the delta method and Lemma 2 to find the limiting distribution of[
α̂x, β̂x

]′
, and the lemma is proved.�
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Proof of Theorem 1

The result in Part (i) is a direct consequence of Lemma 5. Parts (ii) and (iii) are proved

by applying the delta method. If a beta distribution is symmetric, then α = β. Hence, we

are interested in testing if α − β = 0. Let J be the Jacobian of the transformation. So,

J = [1,−1]′ . Therefore under the null of symmetry, by the delta method,

√
n

(
J′
[
α̂x, β̂x

]′)
=
√
n
(
α̂x − β̂x

)
d−→ N (0,J′ΩxJ) ,

and

zSym(X)
d−→ N (0, 1) .

The H2O : µx = 0.5 test can be proved similarly.

Similarly, the Jacobian for the beta method of moments skewness is,

Jx =
(αx + βx)

√
αxβx

(αx + βx + 2)2
√
αx + βx + 1

[
−(βx + 1) (3αx + βx + 2)

αx
,
(αx + 1) (αx + 3βx + 2)

βx

]′
.

Hence, under the null that the distributions have equal skewness,

zSkew
d−→ N (0, 1) ,

and the theorem is proved.�

Notation

Denote µi,j and µ̄i,j as the (i, j)th non-central and central co-moment of (X, Y ) respectively.

So µ̄i,j = E
[
(x− µx)i (y − µy)j

]
, and since the two samples are not assumed to be inde-

pendent, this cannot be further reduced to a product of two expectations. x̄ are s2x are the

usual sample mean and sample variance for the x = (x1, . . . , xn) .
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Lemma 4 (General Limiting Distribution of the Mean and Variance) Where

{(xi, yi)} is a size n random sample from a bivariate distribution with finite fourth moments,

under the null that x and y have the same mean and variance,

√
n
[
x̄− ȳ, s2x − s2y

]′ d−→ N
(
[0, 0]′ ,Ξ

)
,

where

Ξ =

 µ̄2,0 + µ̄0,2 − 2µ̄1,1 µ̄3,0 + µ̄0,3 − µ̄1,2 − µ̄2,1

µ̄3,0 + µ̄0,3 − µ̄1,2 − µ̄2,1 µ̄4,0 − µ̄2
2,0 + µ̄0,4 − µ̄2

0,2 − 2µ̄2,2 + 2µ̄0,2µ̄2,0


Proof of Lemma 4

It is well-known that

E [x̄] = µ1,0, E
[
s2x
]

= µ̄2,0,

and

nVar [x̄] = µ̄2,0, nVar
[
s2x
]

= µ̄4,0 −
n− 3

n− 1
µ̄2
2,0.

It is also easy to derive:

nCov [x̄, ȳ] = µ̄1,1, nCov
[
x̄, s2x

]
= µ̄3,0, nCov

[
x̄, s2y

]
= µ̄1,2.

The only tedious term is

nCov
[
s2x, s

2
y

]
= µ̄2,2 − µ̄0,2µ̄2,0 +

2

n− 1
µ̄2
1,1.

Using the symmetric form, we know all the components of:

Ξ = lim
n→∞

 nVar [x̄− ȳ] nCov
[
x̄− ȳ, s2x − s2y

]
nCov

[
x̄− ȳ, s2x − s2y

]
nVar

[
s2x − s2y

]


=

 µ̄2,0 + µ̄0,2 − 2µ̄1,1 µ̄3,0 + µ̄0,3 − µ̄1,2 − µ̄2,1

µ̄3,0 + µ̄0,3 − µ̄1,2 − µ̄2,1 µ̄4,0 − µ̄2
2,0 + µ̄0,4 − µ̄2

0,2 − 2µ̄2,2 + 2µ̄0,2µ̄2,0


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And so, by the Lindeberg-Levy central limit theorem,

√
n
[
x̄− ȳ, s2x − s2y

]′ d−→ N2

(
[0, 0]′ ,Ξ

)
.

While the normality does not immediately follow as we have to apply tedious transformations

to use the Lindeberg condition, such transformations are beyond the scope of this paper,

and do not provide any useful intuition.�

Lemma 5 (General Limiting Distribution of the Skewness) Where {(xi, yi)}i=1,...,n

is a random sample from a bivariate distribution with finite sixth moments, under the null

that x and y have equal skewness,

√
n (κ̂3x − κ̂3y)

d−→ N (0, ωx + ωy − 2ωxy) ,

where

ωx =
1

4µ̄5
2,0

(
36µ̄5

2,0 − 24µ̄4,0µ̄
3
2,0 + 35µ̄2

2,0µ̄
2
3,0 + 4µ̄6,0µ̄

2
2,0 − 12µ̄5,0µ̄2,0µ̄3,0 + 9µ̄4,0µ̄

2
3,0

)
,

and

ωxy =
1

4µ̄
5/2
0,2 µ̄

5/2
2,0

(
12µ̄2

0,2µ̄2,0µ̄3,1 − 18µ̄2
0,2µ̄2,1µ̄3,0 − 18µ̄2

2,0µ̄0,3µ̄1,2 + 12µ̄0,2µ̄
2
2,0µ̄1,3

)
+

1

4µ̄
5/2
0,2 µ̄

5/2
2,0

(
−36µ̄2

0,2µ̄1,1µ̄
2
2,0 − 4µ̄0,2µ̄2,0µ̄3,3 + 6µ̄0,2µ̄3,0µ̄2,3 + 6µ̄2,0µ̄0,3µ̄3,2

)
+

1

4µ̄
5/2
0,2 µ̄

5/2
2,0

(−9µ̄0,3µ̄3,0µ̄2,2 + µ̄0,2µ̄2,0µ̄0,3µ̄3,0) .

Proof of Lemma 5

By Taylor expanding around the expectations of the moment estimators, we obtain the

approximation

κ̂3x =
µ̄3,0

µ̄
3/2
2,0

+
1

µ̄
3/2
2,0

(m̄3,0 − µ̄3,0)−
3

2

µ̄3,0

µ̄
5/2
2,0

(
s2x − µ̄2,0

)
+Op

(
n−1
)
,
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where m̄3,0 = n (n1n2)
−1∑n

i=1 (xi − x̄)3 . Notice that Em̄3,0 = µ̄3,0. So it is obvious that

E[κ̂3x] = κ3x +O (n−1) . So, the only thorny issue is deriving the variance-covariance matrix

of [κ̂3x, κ̂3y]
′,

Var [κ̂3x] =
1

µ̄3
2,0

Var [m̄3,0] +
9

4

µ̄2
3,0

µ̄5
2,0

Var
[
s2x
]
− 3

µ̄3,0

µ̄4
2,0

Cov
[
m̄3,0, s

2
x

]
+O

(
n−2
)
.

Although the calculation is rather tedious, it is straightforward to obtain the following,

Var [m̄3,0] = n−1
(
µ̄6,0 − µ̄2

3,0 − 6µ̄2,0µ̄4,0 + 9µ̄3
2,0

)
+O

(
n−2
)
,

Cov
[
m̄3,0, s

2
x

]
= n−1 (µ̄5,0 − 4µ̄2,0µ̄3,0) +O

(
n−2
)
.

Hence,

Var [κ̂3x] =
1

4nµ̄5
2,0

(
36µ̄5

2,0 − 24µ̄4,0µ̄
3
2,0 + 35µ̄2

2,0µ̄
2
3,0 + 4µ̄6,0µ̄

2
2,0 − 12µ̄5,0µ̄2,0µ̄3,0 + 9µ̄4,0µ̄

2
3,0

)
+

1

4nµ̄5
2,0

(
−12µ̄5,0µ̄2,0µ̄3,0 + 9µ̄4,0µ̄

2
3,0

)
+O

(
n−2
)
.

To find the covariance, we compute:

Cov [m̄3,0, m̄0,3] = n−1 (µ̄3,3 − µ̄0,3µ̄3,0 − 3µ̄0,2µ̄3,1 − 3µ̄1,3µ̄2,0 + 9µ̄0,2µ̄1,1µ̄2,0) +O
(
n−2
)
,

Cov
[
m̄3,0, s

2
y

]
= n−1 (µ̄3,2 − µ̄0,2µ̄3,0 − 3µ̄1,2µ̄2,0) +O

(
n−2
)
.

So,

Cov [κ̂3x, κ̂3y] =
1

4nµ̄
5/2
0,2 µ̄

5/2
2,0

(
12µ̄2

0,2µ̄2,0µ̄3,1 − 18µ̄2
0,2µ̄2,1µ̄3,0 − 18µ̄2

2,0µ̄0,3µ̄1,2 + 12µ̄0,2µ̄
2
2,0µ̄1,3

)
+

+
1

4nµ̄
5/2
0,2 µ̄

5/2
2,0

(
−36µ̄2

0,2µ̄1,1µ̄
2
2,0 − 4µ̄0,2µ̄2,0µ̄3,3 + 6µ̄0,2µ̄3,0µ̄2,3 + 6µ̄2,0µ̄0,3µ̄3,2

)
+

1

4nµ̄
5/2
0,2 µ̄

5/2
2,0

(−9µ̄0,3µ̄3,0µ̄2,2 + µ̄0,2µ̄2,0µ̄0,3µ̄3,0) +O
(
n−2
)
.

Thus, under the null that X and Y have equal skewness,

√
n (κ̂3x − κ̂3y)

d−→ N (0, ωx + ωy − 2ωxy) ,

and the lemma is proved.�
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